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Galaxy-scale Cnallenges for CDM

s On galaxy scales there is an opportunity to learn
some (astro)physics:

Large galaxies of old stars, small galaxies of young (plus old) stars
—>‘downsizing’

Massive pure-thin-disk galaxies are very common: None should
exist since mergers heat and puff-up disks, create bulges

The MWG has a thick disk, (GG&Reid 1983) and these stars are old,
as in the bulge. This seems common but implies little merging since
early times, to build them up

Sgr dSph (Ibata, GG & Irwin 1995) in the MWG proves late minor
merging happens, but is clearly not dominant process in evolution
of MWG except the outer halo, Ry > 25 kpc

The ‘feedback’ requirement: otherwise gas cools and stars form too
efficiently, plus angular momentum transported away from gas in
mergers: stellar disks are too massive and compact

The substructure problem — how to hide them?



"Things ™ HI/Spitzer/Galex survey —
cusped DM is very hard to find!
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Whny go to the dSpn to analyses

CJM ?

= In the Galactic disk the absence of dark
matter maybe a puzzle — no accreted
dwarfs?

= the local mass determination by Kuijken &
Gilmore 1989,1991 remains the only
experimental determination of (no) local
DM- the same data are often reanalysed



CDM predicts many more satellite haloes than
observed galaxies, at all masses (Moore et al 1999)
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160 —

Cumulative number of halos

simulated cluster :

_____ simulated galaxy |

o Virge cluster data J

? Are there very many faint massive halos? |
? Are there very,very many empty low-mass halo

Use mass-dependent fixes,

“feedback” to adjust mass
function to luminosity.

At low masses we can limit
maximum feedback from
chemistry data.

At very low masses no

gas cooling=>» no stars?
Limits there from [lack of]
disk destruction.

But what is Vc for a dSph?




© Anglo- Austrahan Observatory

Leo I | cIaSS|caI dSph |

kpc

Governato et al 2010

26 25 24 23 2 21

Three fainter discoveries from SDSS (Belokurov et al, 06a) — all
required confirmation with deeper imaging, then spectroscopy

dSph d=45kpc

dSph d=150kpc

glob (?) d=25kpc
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Field of Streams - updated
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Figure 5.1 The distribution of Galactic and M31 dSphs and Galactic globular clusters

in the logarithmic 71/, versus My plane. Galactic classical dSph and UFDs are plotted

as coloured circles according to their ellipticities. The M31 dSphs and Galactic globular

clusters are plotted as open diamonds and dots, respectively.

d ~2u HEW SalelLILEs, Zd1dXIEs dlU Stdl CIUSLELS - DU Note
low yield from Southern SEGUE/SDSS 1maging : only Segue 2 and
Pisces II as candidate galaxies (Belokurov et al 09,10)
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Chnemical elements
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element production is very sensitive to SN
progenitor initial stellar mass

s =» do we see a big scatter from single SNe?

= Metallicity DF defines length and time scale of SNe
enrichment, and KE energy feedback/gas loss

= Do we see (near) zero abundances?

= If not, what pre-enriched the first halos? Did this
same process affect Ly-alpha clouds?
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Elemental Abundances: beyond metallicity
Alpha element and iron
1.5

1_

—{).5 : FEE RS

[O/Fe

SFR, winds..
—SI — I:21 — I:1I o 0 o

[Fe/H] | Wyse & Gilmore 1993
Self-enriched star forming region.

Assume good mixing so IMF-average yields




Core-collapse SNe o/Fe yields depend on
progenitor stellar mass = IMF dependence
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[Till/Fe]

Ruchti et al 2010
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3 Derived ratios of several
key a-elements to iron,
for 215 red giants

Blue = Halo

Red = Thick Disk

Black = Thin Disk

Orange = Thick/Halo

Green = Thin/Thick

=»galactic field stars all

see a mass-average
yield, which is
spatially well mixed.



dSphs vs. MWG abundances
halo/thick disk is not the dSph graveyard
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Letarte (2006): Fornax Hill et al. (in prep): Sculptor



Metallicity — luminosity relation revisited
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Norris, Gilmore, etal in press

MDF data for Seguel

Star [Fe/H]
Geha et al -3.3
7 -3.6
Sil; -1.9
il 2.4

Same range as Bootes |

dSph, including Bootes I, are not well-
described by simple closed-box model.
Star formation more likely episodic.

In Bootes | and Segue 1, Dark Matter
most likely probably provides the deep
potential well that prevents the ejecta of

SNe from leaving the system.
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o([Fe/H

Chemical abundances:

Norris, GG et al 2010a

® Mean iron abundance of member stars

against total luminosity of host system:
clear trend, hard to maintain if
significant tidal stripping of host =» are
any of the dSph tidally stripped?

=>» Interesting? since cusps survive, but
cores don't in simulations.

.*.

g

Seqgue 1 (filled red star) based on
only 4 stars — caution!

TT T[T TT T[T T T T[T T T T[T T T[T T1
* %
| i % Dispersion in metallicity increases as
luminosity decreases — consistent with
inhomogeneous stochastic enrichment
AN NN AN |n |OW'maSS ha|OS, gentlefeedbaCk:

S0 e Highly variable SFR models

predict high element ratio scatter
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Topical chemical evolution models: lots more detail, but
the same essential physics as simple model.

Key goal 1- limit star formation history & feedback on DM
Key goal 2 — relate the dSph to the Galaxy: building blocks?

i . 80 -~ [ T
Blg Cha”enge' . Edvardsson et al. f15}5§:~1} - I[cj |
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“non-standard” SN element production from zero-metal stars
=» very high carbon abundance at low [Fe/H] is a “first star” test.
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A CARBON-RICH, EXTREMELY METAL-POOR (CEMP-no)
STAR IN THE SEGUE 1 SYSTEM!

JOHN E. NORRIS!, GERARD GILMOEE? ROSEMARY F.G. WYSE?* DAVID YONG!,
AND ANNA FREBEL?

Are these the first stars? Why are they only in the faintest dSph??
Bootes | & Segue1
[C/Fe]

o .  rrrrjprerereprrrep el
versus giants in - i
n‘:.'ﬁ.‘.".:.‘..'ﬁﬁ'.T.19.,.[[._ 20 - all stars =
+30E gsph 3 [ C—rich stars ]
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Carbon spreads in dSph — Norris, GG etal in press



Where are we with cnermistry

= There is a [Fe/H] vs Mv correlation at bright
magnitudes, perhaps not below Mv=-8

= There is a high abundance dispersion in dSph =»
they really do/did have massive halos (>10777?)

s At |least the very lowest luminosity dSph have

near zero-abundance stars.

s Stars in dSph are younger, have different chemistry,
than halo & thick disk stars =» what formed the halo?

= Now on to kinematics and masses




CLAIM: all dSph have the same dark mass, variable star numbers
BUT: Very few are 300pc in size, even fewer have relevant data

extrapolated parameters
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Let’s remove only those objects where there are no data within 50% of 300pc radi
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Two factors to consider:
1) how good are the data?
2) How good are the analyses?

Keck kinematics by many authors, ..
“dispersion” dominated by error deconvolution
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Leo-IV dispersion after errors is size of single bin in plot



Getting the most from Flames: Koposov, and IoA group
Bootes-I sample, 12 x 45min integrations

Retain full covariance:

map (Gaia) models

onto data, find "best .,
match log(g), [Fe/H], :. Jh

T eff, with a
Bayesian classifier.
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Velocity accuracy, 45m integn: vel repeats vs accuracy
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Velocity extraction uses Bayesian fitting of template families
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Fic. 10. Distribution of stellar velocities. The black line shows

the distribution of velocities estimated using the Epanechnikov ker-
nel with bandwidth of 1.5km/s, grey line shows the standard his-
togram with the bin size of 1.5km/s. The red and blue lines are
overplotted Gaussians with sigma of 3 and 6 km/s correspondingly:.
The top panel shows velocity distribution for only highly proba-
ble Boo members with [Fe/H]<-1.5, log(g)<3.5, small velocity er-
ror oy <3km/s and not showing blgnlﬁcan’t \,Plouty variability
logio(Bayes factor) <1.5. The bottonl panel show the wvelocity
distribution for all the stars.



summary: fisning in the dSpn
m Literature kinematics of low-luminosity dSph
are unreliable (as is fxcor)
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Fic. 11.— Non-normalised velocity dispersion probability distri-

butions for different subsamples of stars. The dashed line shows
the probability distribution for the velocity dispersion for all the
stars, solid black line stars for not-variable stars with Fe/H|<-1.5,
log(g)<3.5. The grey line shows what would happen if our error-
bars on individual velocities are underestimated or overestimated
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Beware underestimated errors....and non-members
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galaxies are tough for MOND! Stellar rho increases significantly



Now lets look at the more luminous dSph, good data
M<r M=L? M(r)
a Illingworth Mateo etal 1990s | wmp gE, Fp, Ri....
1976 Wilkinson etal = Eddington, Jeans,
2002 Fricke,
LT Chandrasekhar,
s Mateo 1990s Miyamoto, Nagai,
e Koch etal Toomre, Lynden-Bell,
= Strigari, Lokas Dehnen, deZeeuw,
Walker, Evans, Kent &Gunn,
Merrifield & Kent,
Mamon, Many more Kuijken & Gilmore,
Wolf... Wilkinson & KEG,
Wu & Tremaine,
Lokas.....

Plus proxy methods based on internal abundance dispersion



Velocity dispersion profiles
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Présentateur
Commentaires de présentation
Similarity of profiles obtained by different groups with different instruments on different

telescopes is re-assuring.



Star by star comparisons also confirm that (a) individual velocities and estimated errors are correct

and (b) velocity distributions are not strongly affected by unresolved binaries



Dotted curves show mass-follows-light profiles


Very large precision kinematics now exist — vastly superior to
the best rotation curves for gas-rich systems.
Large samples even after population selection: metal-poor

Members:

FornaX 2737 | _ 155_ S ulplto
Sculptor: 1368 gm__ o EN b
Sextans: 441 = S FEEee S 333 :
Carina: 1150 ~
Plus new VLT 1§ ; Hﬂ §E @_{.;# ; {
£ o ¢ i€ of
Yield: x_g_” ﬁii R
Cal', SEXt NSOO/O B 4\ o .27]37, n"luerlnbler§ _2 4\ IIIII 1368 membes

For, Scl ~80% o T S0 1000 1500 0o 500 1000 1500

R [pc] R [pc]

Magellan (walker etal) +VLT (Gilmore et al)

Non-members:
Wyse et al 200

NB: with good data many galaxies are messy
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improvement:

First declining dispersion
profile
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ritting dSpn dispersion profiles: Leo I

p=

[
i

05 |

=0
=05 |]
=

1

NFEW

Core

r [kpc] -

0 0.2 0.4 0.6 0.8

1

s Assume either NFW halo (1
free halo parameter) or
generalised Hernquist profile
(4 free halo parameters)

s Fit binned dispersion profile
using Jeans equations

s Assumptions: spherical
symmetry, equilibrium,
restricted form for anisotropy

s Cored and cusped halo

profiles fit almost equally
well

Koch, GG, et al. (2007)


Présentateur
Commentaires de présentation
Returning to the bright dSphs....



Also true for more detailed profiles of Walker




Core properties: adding anisotropy

Koch, GG, et al 07 - : :
A] 134 566 07 Fixed B Radially varying f3

12} Cusp Cusp 1

Leo II

' . Ly .
H—&—
H—e——
—e—1—

o.M, ro= 0.73 kpc

O.M., ro= 0.20 kpc

Core 1 Core 1

r [arcmin] r [arcmin]

Core slightly favoured, but not conclusive



Full velocity distribution functions:
preaxing the anisotropy-mass profile degeneracy
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Mass measurerments

* DF mocdlels

This is classical physics — eg Kent & Gunn 1982

fi=A,le” 57 — 1)e 77, (2a)
fo=A, — E e 77, (2b)
fr=Asle” 57— 1 77, (2¢)
fo=A—EYT 7. (2d)

It is seen that these functions simply combine two possi-
ble forms each for the energy and angular-momentum
dependence. For the energy dependence we allow for
either a lowered Gaussian (with characteristic energy
o) or a polytrope (with power-law index £). For the
angular-momentum dependence we allow for two ex-
treme cases of anisotropy. The term exp( — J */2J,%) pro-
duces models with orbits that are isotropic in the center
and radial at the edge; J,, is the cutoff angular momen-
tum. The term J ~ 7 produces a more uniform aniso-
tropy, and in fact yields a constant ratio of tangential to
radial velocity dispersions (which depends on the pa-
rameter ¥). Function f] is a King-Michie distribution,
first introduced by Michie (1963) to describe the struc-
ture of global clusters. In the limit J;— o the isotropic
King (1966) models are recovered. The isotropic forms
of either £, or f, (Jy— oo, ¥—0) yield standard polytropes
of index n = 8 + 3/2 (Chandrasekhar 1939).

cf Kuijken & Gilmore
(1989) for application

to local DM density

cf Wu & Tremaine 2006
Wu 2007

Lokas 2002, 2005
Wilkinson etal 2002

for dSph applications



(Very) New rnodels

Assumptions:

s Spherical symmetry
m [ested on tri-axial N-body models - OK
m Equilibrium: tested by data

m [racer surface density fit from star counts very
sensitive in models, so we have extended the

models to fit
simultaneous
avoid interpo

hoth star counts and kinematics
y, and increased resolution to

ation =» expensive!



Same form used for both halo and stars,
stellar parameters not fixed, but fit

Zhao model = generalised Hernquist/NFW/...



Distripution function

F(E,L) =w(E)g(E,L) Gerhard (1991)
~Je+(1-¢)(1-(1—-2%)* tangential
Al {c + (1 —c)(1 —z?)° radial
L

AL =
x( : ) LU+Lcirc(E)

NOTE: these are sufficiently general — the data test directly for
any possible rotation/tidal torques/asymmetry...



Constructing the line of SJght
velocity/brigntness distripui
s **Fit surface brightness data, not profile

s Use method by P. Saha to invert integral
equation for DF:

p(®) = 2

| TwEag [ 9B LLAL
r? Jo 0o /2(® - E) - L%/r?

Lyax = V2(® — E)r
= Project to obtain LOS velocity and

brightness on a grid of R and s

s **High resolution to avoid interpolation,
convolve with individual velocity errors




Fitting the data

Surface brightness data fitted as part of the MCMC

Markov-Chain-Monte-Carlo [COSMO-MC] used to scan
parameter space

Parameters: 3 velocity distribution parameters (a, ¢, Lo

4 halo parameters ( «, 3,7, po ) for each of mass and
surface brightness.

Multiple starting points for MCMC used - chains run in
parallel and combined once “converged”

Error convolution included - using only data with
Avpes < 2kms™}



Inner lurninosity profiles are important

alliptical radius [pe]
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Figure 4.26 The radial profile derived by calculating the average number density within
elliptical annuli. Foreground and contamination within the selected member region in
panel (a) of Figure 4.24 is estimated as 0.09 arcmin™2 from the reference CMD and
subtracted from the profile.
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Figure 2. Line-of-sight velocity dispersion for our five satellites.
The solid curves show the dispersion predicted by inserting the
potential determined from the best fitting Aquarius subhalo and
the photometric profile of Table [[]into Eq.[1] assuming no veloc-
ity anisotropies. The symbols show the observational data taken
from [Mateo et al] (2008) (Leo I) and [Walker et al) ﬂQIJI]Eﬂ) (For-
nax, Carina, Sculptor, and Sextans). The errors on the velocity
dispersion in each bin are assigned according to Eq. []




Spatial resolution is an

I3

important factor

log, , ¢ (1)

-05
log. , (7)

Fitting, not fixing, the surface tracer distribution is important

4

log,, ¢ (1)

-0.5
l0g, , (1




Tests with spherical models
Cusp Core

5 -1 -05 0
log._ (r)

Log r (kpc Log r (kpc
¢ Artificial data sétspo similar size, radial coverage %nd(vel?lo)city errors

to observed data set in Fornax
® Excellent recovery of input profiles (solid black), even in inner
regions; green dashed 1s most likely, black dashed enclose 90%

confidence limits


Présentateur
Commentaires de présentation




Clearly have discriminatory power


0]

Tests with (anisotropic) triaxial models

Cusp Core

&)}
92

w )

1] il

W 3]
”

o
[

Log p (2e5 Mg/kpc3)

Log p (2e5 Mg/kpc?)

- N
¢ (I

Log r (kpc) Log r (kpc)
® Axis ratios 0.6 and 0.8, similar to projected 0.7 of Fornax dSph; ~2000
velocities, to match data.

* Models have discriminatory power even when modelling
assumptions not satisfied. We have a statistical test to
Identify where/when models fall.


Présentateur
Commentaires de présentation
Doesn’t always work - but we are developing a statistical test to identify those models

that don’t work. 



Cusp is Y proj 



Core is Y proj



Crucial test is with models that don’t match assumptions



Here the assumptions of sphericity and anisotropy profile are not valid - but we

can still recover the profile



It’s possible that it may favour anistropy over mass profile in some cases.


®

rornax - PRELIMINARY profiles

| real data
Density

Mass

log.,,[M(1)]

2
-0. -1.5
log., (1

-05 0
log, , (1

* 3 MCMC chains combined: total of ~5000 models

* At radii where most of data lie, clear constraints on profile
* pbaryonic mass included, of course!


Présentateur
Commentaires de présentation
Star profile is quite uncertain



Starting to turn over in inner regions? 



Due to significant uncertainties in light profile, I haven’t yet subtracted light contribution to potential. So above plot is upper limit to slope - it’s somewhere between stars and NFW at the moment, though

closer to NFW. 



A detailed comparison with NFW/Einasto profiles will be needed to determine whether the profiles

we recover are consistent with these.



Still need to verify impact of surface density fit on the mass profile recovered.



Stellar inner slope is ~0.25



90% of data outside -0.8


o (R) [ km/s ]

1

Fornax - dispersion profile
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NB: Dispersion data not used to constrain models



Présentateur
Commentaires de présentation
Most likely model plotted



Data are those with P>0.95 of being members (Matt’s definition) and velocity errors < 2km/s



90 of data are outside 0.15 in this plot



tangential anisotropy may be artefact (of foreground contamination? of tidal effects?)


surmrnary:
= A minimum physical scale for galaxies:
half-light radius >100pc

m Mass size scale somewhat larger (x2?)

s Cored? mass profiles, with similar low mean mass
densities

~0.1My/pc3, ~10GeV/cc

= phase space densities fairly constant, maximum for galaxies
— are they the first halos?

Pre-Galactic abundances in lowest-luminosity

1T~ 1

“ Examine the objects as they are and you will see their true nature,
look at them from your own ego and you will see only your feelings, because
nature is neutral, while your feelings are only prejudice and obscurity.”

AB%E, Shao Yong, 1011-1077






Eddington analysis of kinematics: spherical, isotropic, assume NFW

Strigari, White, Frenk 2010

Table[1] Note that since our goal is to demonstrate that the
observations are consistent with simple spherical, isotropic
models within ACDM subhalos, it is not necessary for us to
choose the best-fit profile parameters; rather we need only
show that the parameters we do choose are consistent with
the star count data.

Table 2. KS probabilities for the maximum difference between
the observed and modeled cumulative distributions of |v,| within
four equally populated annuli in each of our observed satellites.
Bins 1-4 correspond to the annuli of Fig. [4]ordered from inside to
ontside. The complement of each of these values ltlﬁrl“‘:Lllt‘: the
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Figure 4.26 The radial profile derived by calculating the average number density within
elliptical annuli. Foreground and contamination within the selected member region in
panel (a) of Figure 4.24 is estimated as 0.09 arcmin™ from the reference CMD and
subtracted from the profile.
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Figure 2. Line-of-sight velocity dispersion for our five satellites.
The solid curves show the dispersion predicted by inserting the
potential determined from the best fitting Aquarius subhalo and
the photometric profile of Table [[]into Eq.[1] assuming no veloc-
ity anisotropies. The symbols show the observational data taken
from |[Mateo et al| (2008) (Leo I) and Walker et al) {2009 (For-
nax, Carina, Sculptor, and Sextans). The errors on the velocity
dispersion in each bin are assigned according to Eq. []
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