The **7**-Year WMAP Observations: Cosmological Interpretation

Eiichiro Komatsu (Texas Cosmology Center, UT Austin) 14th Paris Cosmology Colloquium, July 22, 2010

WMAP will have collected 9 years of data by August

June 2001: WMAP launched!

February 2003: The first-year data release

March 2006: The three-year data release

March 2008: The five-year data release

Stacked Temperature

Stacked Polarization

January 2010: The seven-year

7-year Science Highlights

- First detection (>3 σ) of the effect of primordial **helium** on the temperature power spectrum.
- The primordial **tilt** is less than I at 99.5%CL:
 - n_s=0.968±0.012 (68%CL; with new RECFAST)
- Improved limits on neutrino parameters:
 - $\sum m_v < 0.58 eV (95\% CL); N_{eff} = 4.3 \pm 0.9 (68\% CL)$
- First direct confirmation of the predicted
 polarization pattern around temperature spots.
- Measurement of the SZ effect: missing pressure?

WMAP 7-Year Papers

- Jarosik et al., "Sky Maps, Systematic Errors, and Basic Results" arXiv:1001.4744
- Gold et al., "Galactic Foreground Emission" arXiv:1001.4555
- Weiland et al., "Planets and Celestial Calibration Sources" arXiv:1001.4731
- Bennett et al., "Are There CMB Anomalies?" arXiv:1001.4758
 Larson et al. "Power Spectra and WAAP Derived Parameters"
- Larson et al., "Power Spectra and WMAP-Derived Parameters" arXiv:1001.4635
- Komatsu et al., "Cosmological Interpretation" arXiv:1001.4538

WMAP 7-Year Science Team

- C.L. Bennett
- G. Hinshaw
- N. Jarosik
- S.S. Meyer
- L. Page
- D.N. Spergel
- E.L.Wright

- M.R. Greason
- M. Halpern
- R.S. Hill
- A. Kogut
- M. Limon
- N. Odegard
- G.S.Tucker

- J. L.Weiland
- E.Wollack
- J. Dunkley
- B. Gold
- E. Komatsu
- D. Larson
- M.R. Nolta

- K.M. Smith
- C. Barnes
- R. Bean
- O. Dore
- H.V. Peiris
- L.Verde

WMAP at Lagrange 2 (L2) Point

June 2001: WMAP launched!

February 2003: The first-year data release

March 2006: The three-year data release

March 2008: The five-year data release

January 2010: The seven-year data release

- WMAP leaves Earth, Moon, and Sun 6 behind it to avoid radiation from them

• L2 is 1.6 million kilometers from Earth

Cosmology Update: 7-year

• Standard Model

- H&He = 4.56% (±0.16%)
- Dark Matter = 22.7% (±1.6%)
- Dark Energy = 72.8% (±1.6%)
- H₀=70.4±1.4 km/s/Mpc
- Age of the Universe = 13.75 billion years (±0.11 billion years)

Universal Stats

Age of the universe today 13.75 billion years

Age of the cosmos at time of reionization 457 million years

"ScienceNews" article on the WMAP 7-year results

Effect of helium on C¹¹

- We measure the baryon number density, n_b, from the 1stto-2nd peak ratio.
- As helium recombined at $z \sim 1800$, there were fewer electrons at the decoupling epoch (z=1090): $n_e=(I-Y_p)n_b$.
- More helium = Fewer electrons = Longer photon mean free path $I/(\sigma_T n_e) = Enhanced damping$
- $Y_p = 0.33 \pm 0.08$ (68%CL)
 - Consistent with the standard value from the Big Bang nucleosynthesis theory: $Y_P = 0.24$.
- Planck should be able to reduce the error bar to **0.01**. 12

- I-to-3: matter-to-radiation ratio (z_{EQ} : equality redshift)

Another "3rd peak science": Number of Relativistic Species

And, the mass of neutrinos

 WMAP data combined with the local measurement of the expansion rate (H₀), we get $\sum m_v < 0.6 \text{ eV}$ (95%CL)

CMB Polarization

• CMB is (very weakly) polarized!

Physics of CMB Polarization

 CMB Polarization is created by a local temperature quadrupole anisotropy.

Principle

• Polarization direction is parallel to "hot."

• This is the so-called "E-mode" polarization.

CMB Polarization on Large Angular Scales (>2 deg)

$\Delta T/T = (Newton's Gravitation Potential)/3$

How does the photon-baryon plasma move?

CMB Polarization Tells Us How Plasma Moves at z=1090 Zaldarriaga & Harari (1995)

• Plasma **falling into** the gravitational

potential well = **Radial** polarization pattern

Sachs-Wolfe: $\Delta T/T = \Phi/3$ Stuff flowing in

Velocity gradient

The left electron sees colder photons along the plane wave

Compression increases temperature Stuff flowing in

Pressure gradient slows down the flow

Velocity gradient

Stacking Analysis

 Stack polarization images around temperature hot and cold spots.

 Outside of the Galaxy mask (not shown), there are 12387 hot spots and 12628 cold spots.

Two-dimensional View

- All hot and cold spots are stacked (the threshold peak height, $\Delta T/\sigma$, is zero)
- "Compression phase" at $\theta = 1.2 \text{ deg and}$ "slow-down phase" at $\theta = 0.6 \text{ deg are}$ predicted to be there and we observe them!

 - The overall significance level: 8σ

 Gravitational potential can generate the Emode polarization, but not B-modes.

Gravitational waves can generate both E- and B-modes!

E-mode

Potential

 $\Phi(\mathbf{k},\mathbf{x}) = \cos(\mathbf{k}\mathbf{x})$

Polarization Direction

• E-mode: the polarization directions are either parallel or tangential to the direction of the plane wave perturbation.

B-mode

$h(\mathbf{k},\mathbf{x}) = \cos(\mathbf{k}\mathbf{x})$

Polarization Direction

• **B-mode**: the polarization directions are tilted by 45 degrees relative to the direction of the plane wave perturbation.

Gravitational Waves and Quadrupole Gravitational waves stretch space with a quadrupole

pattern.

B-mode polarization generated by h_X

E-mode polarization generated by h+

Polarization Power Spectrum

Multipole, I

No detection of B-mode polarization yet. **B-mode is the next holy grail!**

Probing Inflation (Power Spectrum)

- Joint constraint on the primordial tilt, n_s, and the tensor-to-scalar ratio, r.
 - Not so different from the 5-year limit.
 - r < 0.24 (95%CL)

Probing Inflation (Bispectrum) No detection of 3-point functions of primordial curvature perturbations. The 95% CL limits are:

- - $-10 < f_{NI} > -10 < 74$
 - $-214 < f_{NI} = equilateral} < 266$
 - $-410 < f_{NI}$ orthogonal < 6
- The WMAP data are consistent with the prediction of simple single-field inflation models:
 - $I n_s \approx r \approx f_{NL} \log n_s$, $f_{NL} equilateral = 0 = f_{NL} orthogonal$.

If this means anything to you...

 $\langle \Phi_{\mathbf{k}_1} \Phi_{\mathbf{k}_2} \Phi_{\mathbf{k}_3} \rangle = (2\pi)^3 \delta^D (\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) F(k_1, k_2, k_3)$

$$\begin{split} F_{\text{local}}(k_{1},k_{2},k_{3}) & F_{\text{equil}} \\ &= 2f_{NL}^{\text{local}}[P_{\Phi}(k_{1})P_{\Phi}(k_{2}) + P_{\Phi}(k_{2})P_{\Phi}(k_{3}) \\ &+ P_{\Phi}(k_{3})P_{\Phi}(k_{1})] \\ &= 2Af_{NL}^{\text{local}} \left[\frac{1}{k_{1}^{4-n_{s}}k_{2}^{4-n_{s}}} + (2 \text{ perm.}) \right], \quad -\frac{1}{(k_{1},k_{2},k_{3})} \\ &+ (5 \text{ perm.}) \\ &+ (5 \text{ perm.}) \\ &\times \left\{ -\frac{3}{k_{1}^{4-n_{s}}k_{2}^{4-n_{s}}} - \frac{3}{k_{2}^{4-n_{s}}k_{3}^{4-n_{s}}} - \frac{3}{k_{3}^{4-n_{s}}k_{1}^{4-n_{s}}} \\ &- \frac{8}{(k_{1}k_{2}k_{3})^{2(4-n_{s})/3}} + \left[\frac{3}{k_{1}^{(4-n_{s})/3}k_{2}^{2(4-n_{s})/3}k_{3}^{4-n_{s}}} \right] \right] \right\} \end{split}$$

 $+(5 \text{ perm.})]\}.$

 $\begin{aligned} {}_{1}(k_{1},k_{2},k_{3}) &= 6Af_{NL}^{\text{equil}} \\ \frac{1}{k_{1}^{4-n_{s}}k_{2}^{4-n_{s}}} - \frac{1}{k_{2}^{4-n_{s}}k_{3}^{4-n_{s}}} - \frac{1}{k_{3}^{4-n_{s}}k_{1}^{4-n_{s}}} \\ \frac{2}{k_{2}k_{3}} \frac{1}{k_{2}^{(4-n_{s})/3}} + \left[\frac{1}{k_{1}^{(4-n_{s})/3}k_{2}^{2(4-n_{s})/3}k_{3}^{4-n_{s}}} \right] \\ \text{perm.}]] \end{aligned}$

Zel'dovich & Sunyaev (1969); Sunyaev & Zel'dovich (1972) Sunyaev–Zel'dovich Effect

Hot gas with the electron temperature of $T_e >> T_{cmb}$

- y = (optical depth of gas) $k_B T_e/(m_e c^2)$ = $[\sigma_T/(m_ec^2)] \int n_e k_B T_e d(los)$ = $[\sigma_T/(m_ec^2)] \int (electron pressure) d(los)$
- •Decrement: $\Delta T < 0$ (v<217 GHz) •Increment: $\Delta T > 0$ (v>217 GHz)

 $g_{v} = -2 (v=0); -1.91, -1.81 \text{ and } -1.56 \text{ at } v=41, 61 \text{ and } 94 \text{ GHz}$

observer • $\Delta T/T_{cmb} = g_v y$

A New Result!

We find, for the first time in the Sunyaev-Zel'dovich (SZ) effect, a significant difference between relaxed and nonrelaxed clusters.

 Important when using the SZ effect of clusters of galaxies as a cosmological probe.

The SZ Effect: Decrement and Increment

•RXJ1347-1145

Left, SZ increment (350GHz, Komatsu et al. 1999)Right, SZ decrement (150GHz, Komatsu et al. 2001)

WMAP Temperature Map

-200

+200

Where are clusters? Coma Virgo

$z \le 0.1; 0.1 \le z \le 0.2; 0.2 \le z \le 0.45$ Radius = $5\theta_{500}$

We find that the CMB fluctuation in the direction of Coma is $\approx -100 \mu K$. (This is a new result!)

 $y_{coma}(0) = (7\pm 2) \times 10^{-5}$ (68%CL)

A Question

- Are we detecting the **expected** amount of electron pressure, P_e , in the SZ effect?
 - Expected from X-ray observations?
 - Expected from theory?

Arnaud et al. Profile

• A fitting formula for the average electron pressure profile as a function of the cluster mass (M_{500}), derived from 33 nearby (z<0.2) clusters (REXCESS sample).

Arnaud et al. Profile

A significant scatter exists at R<0.2R₅₀₀, but a good convergence in the outer part.

The X-ray data (XMM) are provided by A. Finoguenov.

44

way too low.

Well...

- That's just one cluster. What about the other clusters?
 - We measure the SZ effect of a sample of well-studied nearby clusters compiled by Vikhlinin et al.

Coma (non-cooling flow) $M_{500} = 6.7 \times 10^{14} h^{-1} M_{sun}$ A2029 (cooling flow) **Komatsu** $M_{500} = 6.2 \times 10^{14} h^{-1} M_{sun}$ A754 (non-cooling flow) $M_{500} = 6.1 \times 10^{14} h^{-1} M_{sun}$ **Pt** <u>a</u>l. A3667 (non-cooling flow) $M_{500} = 5.3 \times 10^{14} h^{-1} M_{sun}$ A85 (cooling flow) $M_{500} = 4.3 \times 10^{14} h^{-1} M_{sun}$ ZwCl1215 (cooling flow) $M_{500} = 4.1 \times 10^{14} h^{-1} M_{sun}$ 0.2 0.4 0.6 0.8 1.2 1.4 1.0 θ/θ_{500}

-yeal \square as 2010) D lent

46

Low-SZ is seen in the WMAP

Mass Range ^a	# of clusters	X-ray Data	Model
$6 \le M_{500} < 9$	5	0.90 ± 0.16	0.73 ± 0.13
$4 \le M_{500} < 6$	6	0.73 ± 0.21	0.60 ± 0.17
$2 \le M_{500} < 4$	9	0.71 ± 0.31	0.53 ± 0.25
$1 \le M_{500} < 2$	9	-0.15 ± 0.55	-0.12 ± 0.47
$4 \le M_{500} < 9$	11	0.84 ± 0.13	0.68 ± 0.10
$1 \le M_{500} < 4$	18	0.50 ± 0.27	0.39 ± 0.22
$4 \le M_{500} < 9$			
cooling flow ^d	5	1.06 ± 0.18	0.89 ± 0.15
non-cooling flow ^e	6	0.61 ± 0.18	0.48 ± 0.15
$2 \le M_{500} < 9$	20	0.82 ± 0.12	0.660 ± 0.095
$1 \le M_{500} < 9$	29	0.78 ± 0.12	0.629 ± 0.094

^a In units of $10^{14} h^{-1} M_{\odot}$. Coma is not included. d:ALL of "cooling flow clusters" are relaxed clusters. e:ALL of "non-cooling flow clusters" are non-relaxed clusters. 47

Low-SZ: Signature of mergers?

Mass Range ^a	# of clusters
$6 \le M_{500} < 9$	5
$4 \le M_{500} < 6$	6
$2 \le M_{500} < 4$	9
$1 \le M_{500} < 2$	9
$4 \le M_{500} < 9$	11
$1 \le M_{500} < 4$	18
$4 \le M_{500} \le 9$	
cooling flow ^d	5
non-cooling flow ^e	6
$2 \le M_{500} < 9$	20
$1 \le M_{500} < 9$	29

^a In units of $10^{14} h^{-1} M_{\odot}$. Coma is not included. d:ALL of "cooling flow clusters" are relaxed clusters. e:ALL of "non-cooling flow clusters" are non-relaxed clusters. 48

 0.84 ± 0.13 0.50 ± 0.27

SZ: Main Results

- Arnaud et al. profile systematically overestimates the electron pressure! (Arnaud et al. profile is ruled out at 3.2σ).
- But, the X-ray data on the *individual* clusters agree well with the SZ measured by WMAP.
- Reason: Arnaud et al. did not distinguish between relaxed (CF) and non-relaxed (non-CF) clusters.
 - This will be important for the proper interpretation of the SZ effect when doing cosmology with it. 49

• In Arnaud et al., they reported that the cooling flow clusters have much steeper pressure profiles in the inner part.

• Taking a simple median gave a biased "universal" profile. 50

"World" Power Spectrum

 The SPT measured the secondary anisotropy from (possibly) SZ. The power spectrum amplitude is Asz=0.4-0.6 times the expectations. Why?

Lower Asz: **Two** Possibilities

$$C_l = g_{\nu}^2 \int_0^{z_{\text{max}}} dz \frac{dV}{dz} \int_{M_{\text{min}}}^{M_{\text{max}}}$$

[1] The number of clusters is less than expected. • In cosmology, this is parameterized by the so-called " σ_8 "

parameter.

$$\frac{l(l+1)C_l}{2\pi} \simeq 330 \,\mu \mathrm{K}^2 \,\sigma_8^7 \,\left(\frac{\Omega}{0.4}\right)$$

• σ_8 is 0.77 (rather than 0.81): $\sum m_v \sim 0.2 eV$?

 $\frac{dn(M,z)}{dM} |\tilde{y}_l(M,z)|^2$

 $\left(\frac{\Omega_{\rm b}h}{0.035}\right)^2 \times [gas \ pressure]^2$

Lower Asz: **Two** Possibilities

$$C_l = g_{\nu}^2 \int_0^{z_{\text{max}}} dz \frac{dV}{dz} \int_{M_{\text{min}}}^{M_{\text{max}}} dM \frac{dn(M,z)}{dM} |\tilde{y}_l(M,z)|^2$$

• [2] Gas pressure per cluster is less than expected.

- The power spectrum is [gas pressure]².
- A_{SZ}=0.4–0.6 means that the gas pressure is less than expected by $\sim 0.6-0.7$.
- And, our measurement shows that this is what is going on!

Conclusion

- SZ effect: Coma's radial profile is measured, several massive clusters are detected, and the statistical detection reaches 6.5σ.
 - Evidence for lower-than-theoretically-expected gas pressure.
- The X-ray data are fine: we need to revise the existing models of the intracluster medium.
 - Distinguishing relaxed and non-relaxed clusters is very important!

Summary

- Significant improvements in the high-I temperature data, and the polarization data at all multipoles.
 - High-I temperature: $n_s < I$, detection of helium, improved limits on neutrino properties.
 - Polarization: polarization on the sky!
 - Polarization-only limit on r: r<0.93 (95%CL).
 - All data included: r<0.24 (95%CL)

A Puzzle

- SZ effect: Coma's radial profile is measured, several massive clusters are detected, and the statistical detection reaches 6.5σ .
 - Evidence for lower-than-theoretically-expected gas pressure.
 - First detection, in the SZ effect, of the difference between relaxed and non-relaxed clusters.
 - The X-ray data are fine: we need to revise the existing models of the intracluster medium.