Bernard Sadoulet Dept. of Physics /LBNL UC Berkeley UC Institute for Nuclear and Particle Astrophysics and Cosmology (INPAC) UC Dark Matter Initiative

Direct Detection of Galactic Dark Matter

Why WIMPs?

Experimental situation

Situation in Summer 2009 DAMA Recent action Dec 2009-July 2010 CDMS II 2 events Xenon 100 CoGeNT and DAMA COUPP Ar

The future of direct detection

Need for at least 2 technologies Complementarity with LHC and indirect detection

Dark Matter Could Be Due to New Physics at the TeV Scale! A remarkable coincidence Particles in thermal equilibrium + decoupling when nonrelativistic $\Rightarrow \Omega_x h^2 = \frac{3 \cdot 10^{-27} \, cm^3 \, / \, s}{\langle \sigma_A v \rangle} \approx 0.12 \quad \Rightarrow \sigma_A \approx \frac{\alpha^2}{M_{\rm em}^2}$ Cosmology points to W&Z scale Inversely standard particle model requires new physics at this scale (e.g. supersymmetry, global symmetry or additional dimensions) => significant amount of dark matter Weakly Interacting Massive Particles Large scale structure: ACDM amazing first approximation Rumors of its death may be an exaggeration (25yrs) Three detection methods: **Direct Detection in the Cosmos**= Halo WIMP elastic scattering **Indirect Detection in the Cosmos**= Annihilation products $\gamma, e^+, \overline{p}, v$

Production at the large Hadron Collider

Halo WIMP Scattering "Direct Detection"

Elastic scattering

Expected event rates are low (<< radioactive background) Small energy deposition (≈ few keV) << typical in particle physics Signal = nuclear recoil (electrons too low in energy) ≠ Background = electron recoil (if no neutrons)

Signatures

- Nuclear recoil
- Single scatter ≠ neutrons/gammas
- Uniform in detector

Linked to galaxy

- Annual modulation (but need several thousand events)
- Directionality (diurnal rotation in laboratory but 100 Å in solids)

Experimental Approaches

As large an amount of information and a signal to noise ratio as possible

Direct Detection Techniques

At least two pieces of information in order to recognize nuclear recoil extract rare events from background (self consistency)

+ fiducial cuts (self shielding, bad regions)

Situation Summer 2009

Scalar couplings: Spin independent cross sections January 2009 compilation by Jeff Filippini

January 2009 compilation by Jeff Filippini Gray=DAMA 2 regions(Na, I) from Savage et al.

Spin dependent couplings

DAMA Claim April 2008 still stands

If WIMPs exist, we expect a modulation in event rate

Tension with Other Expts.

Spin independent interactions

Chalonge 24 July 2010

7

8

What could it be?

Most likely very subtle detector problem

Modulation is basically summer-winter

Example of the cosmic muon rate which is modulated with the same phase (decay path of the pions change with temperature)

Many things change: temperature, water in mountain, humidity, electric voltage

What seems excluded

Neutron from muons Direct effect of muons on detector

Examples of effects which have not been excluded convincingly

Modulation of the efficiency

e.g. of the PM noise rejection algorithm

Modulation of the ⁴⁰K 1.46 MeV gamma detection efficiency

(e.g. varying humidity in purge gas=> modulation of dead layer=> 3 keV escape

Not blind analysis!

Sociological problem:

Nobody finds the result plausible enough to repeat the experiment! However, as a field we need to cross check the only claim.

A different team has to redo the experiment!

in Southern Hemisphere?

e.g. NaI detectors in a hole in Antarctic Ice (Stubbs, Fisher, IceCube, B.S.)

in Borexino?

CDMS II December 2009 **Ionization + Athermal Phonons**

7.5 cmØ 1 cm thick \approx 250g 4 phonon sensors on 1 face 2 ionization channel

Ionization yield

Timing -> surface discrimination

CDMS Blind Analysis

We unblinded the signal region November 5, 2009

Chalonge 24 July 2010

Unblind Events Failing Timing Cut

150 events in the NR band fail the timing cut, consistency checks deemed ok

Chalonge 24 July 2010

Unblind Events Passing Timing Cut

2 events in the NR band pass the timing cut!

Background 0.8 ± 0.1 (stat) ± 0.2 (syst) surface events + 0.1 ± 0.05 (syst) neutron => 23% Probability

Chalonge 24 July 2010

90% C.L. Spin-Independent Limit

Science 12 February 2010

 $3.8 \times 10^{-44} \text{ cm}^2$ for a WIMP of mass 70 GeV/c²

Chalonge 24 July 2010

Inelastic Dark Matter

Has been invoked by Weiner et al. to explain DAMA/LIBRA data, among other things. [Phys. Rev. D 64, 043502 (2001)]

> Scattering occurs via transition of WIMP to excited state (with mass splitting δ)

> spectrum peaks at higher recoil energies

> DAMA, allowed regions (at 90% C.L.) computed from χ^2 goodness-of-fit and standard truncated halo-model [JCAP 04 (2009) 010]

The future of Ge 2

SCDMS Soudan 15kg 2011-2012: 5 10⁻⁴⁵ cm² SCDMS SNOLAB 100kg 2014-2017 3 10⁻⁴⁶ cm²

GEODM DUSEL 1.5 tonne

2017-2021 2 10⁻⁴⁷ cm² Challenge is to produce detector at low enough cost (\$50M)

EDELWEISS

2012: 5 10⁻⁴⁵ cm²
40 detectors 800g + improvement background, electronics

EURECA 100kg

2013-2016 few 10⁻⁴⁶ cm²

-> tonne

New results of Xenon 100 May 2010

Liquid Xenon

161kg Xe 40kg active volume

Scintillation (S1) + Ionization (S2) Log scale

Chalonge 24 July 2010

Exclusion limit

Sensitivity ≈ CDMS Increasing tension with DAMA

Do not see evidence for low mass seen by CoGeNT

The future of Xenon

3 experiments

XMASS (single phase) Xenon 100-> 1t LUX 350kg-> few tons

Exciting

Currently running With rejection of ≈7 10⁻³ could improve by factor 5 ≈ 5 10⁻⁴⁵ cm²/nucleon

But clearly see volume contamination

Will have to understand

Still far from performance needed for 10⁻⁴⁷ cm²/nucleon (Generation 3 experiment goal!)

Chalonge 24 July 2010

21

Compatibility between CoGeNT and DAMA?

Hooper, Collar, Hall, McKinsey arXiv 1007.1005

Chalonge 24 July 2010

Metastable Detectors

Only triggered by large deposited- energy density Insensitive to electron recoils (but sensitive to alphas) Cheap, Scalable But do not measure energy. Need to scan!

PICASSO Granules

COUPP Bubble chambers

4kg in 2009, 60kg in progress, 500kg then 16 tons at DUSEL 25 30 35 pressure (psig)

23

Chalonge 24 July 2010

24

Preliminary Results May 2010

Is there enough information? Energy scanning penalty Upper limit machines?

Liquid Argon

Liquid Argon (or Neon)

For light liquids, one additional handle : rise time Triplet (long decay time) killed by nuclear recoil

However

Far UV scintillation => wave shifter Need enough photo electrons

=> Higher thresholds

³⁹Ar: 1 count/s/kg Need to deplete (underground Ar) seems to work! >1/20

Liquid Argon: A lot of action!

Single Phase Mini CLEAN 280kg 2010 DEAP 3600 2012

Dual phase Argon

WARP 140kg: Technical run at Gran Sasso ArDM: Being assembled

Depleted dual phase Argon

Dark side 50kg 2011 in CTF (Borexino test facility) ->1tonne 2014 -> 20tonne DUSEL

The future of Direct Detection

CDMS II

Generation 1 2 20

Generation 2 == 2016

10⁻⁴³

10⁻⁴⁴

10⁻⁴⁵

10⁻⁴⁶

 $\sigma_{\rm SI} \, [{\rm cm}^2]$

Technologies are rapidly reaching the needed level of sensitivity/background rejection 10⁻⁴²

- Ge
- Xe
- Bubble Chamber
- Ar

We need several technologies

Several targets to check A dependence spin threshold effects (e; dark matter) Need several technologies with different systematics cross checks insurance against failure (e.g. unknown background)

XENON100

3 Complementary Approaches

Chalonge 24 July 2010

29

We Need All Three Approaches

LHC

Could see quite rapidly some missing energy: New Physics! But cannot prove that the new particles are stable and form the Dark Matter e.g., χ -> gravitino +... ("Super-WIMP")

Need to detect those particles in the cosmos

Elastic scattering of halo WIMPs in the laboratory

Very clean + would prove that these particles are stable But can only measure approximately a cross section and a mass: Little input on the fundamental physics

Annihilation products in the galactic halo Most evidence will be ambiguous <- variety of astrophysics phenomena Would need confirmation

Complementary region of sensitivities

Take as an example mSUGRA

(Over) Simplification of Supersymmetry through GUT assumptions

-> 4 parameters + sign

4 regions where the relic density is compatible with our measurements

Mass Complementarity

Direct detection experiments do not have an upper mass cut-off: B

WIMPs Annihilation into Gamma Rays

Rich Physics in Overlap Regions

M₁

Conclusions

The nature of Dark Matter: Very fundamental question!

10⁻⁴³ Weakly Interactive Massive Particle Dark Matter could be due to TeV Scale 10⁻⁴⁴ σ_{SI} [cm²] 10⁻⁴ Next five years will be very important 10 Direct Detection: A lot of action **10**⁻⁴ Ge and Xe are reaching interesting level of sensitivity Bubble chamber and Ar are making a lot of progress Indirect detection: Fermi is a powerful instrument + IceCube LHC is starting to run Complement region of sensitivities In overlap region rich physics!

