Cosmology from ACT: the small-scale CMB

Jo Dunkley Oxford Astrophysics

Ecole Chalonge, July 21

Atacama Cosmology Telescope

- Univ of British Columbia (Canada)
- Univ of Cape Town (S Africa)
- Cardiff University (UK)
- Columbia University (USA)
- Haverford College (USA)
- INAOE (Mexico)
- Univ of Kwa-Zulu Natal (S Africa)
- Univ of Massachusetts (USA)
- NASA/GSFC (USA)
- NIST (USA)

- Univ of Oxford (UK: Dunkley, Addison, Hlozek)
- Univ of Pennsylvania (USA)
- *Princeton University (USA) (PI L. Page)
- Univ of Pittsburgh (USA)
- Pontifica Universidad Catolica (Chile)
- Rutgers University (USA)
- Univ of Toronto (Canada)
- Rome La Sapienza, MPI, Miami, Stanford, Berkeley (Das), Chicago, CfA, LLNL, IPMU Tokyo
- \rightarrow ~ 90 collaborators

ACT: the telescope

5200 meter elevation, one of driest places on planet
1° field of view, 6-meter primary, 2-meter secondary, 1.4' resol
3 frequencies: 148, 220, 270 GHz, 3000 TES detectors

ACT Sky Coverage

ACT southern field at 148 GHz

Hajian et al (2010)

(At least) seven acoustic peaks!

Inflation: limits from spectrum

- Effective field theory, period of exponential expansion for > 60 e-folds.
- Many models predicts spectra index <1. The index is still 3 sigma away.
- Running index, find $dn_s/dlnk = -0.024 \pm 0.015$

(ACT+WMAP+BAO+H0)

New upper limit on tensors, find

r < 0.19 (95% CL, ACT+WMAP+BAO+H0)

Primordial power spectrum

Early universe physics

Neutrinos: More species, longer radiation domination. Changing Neff changes equality redshift. Also - species suppress early acoustic oscillations in primary CMB, and phase shift in primary CMB.

Helium: Usually assume $Y_p = 0.24$, predicted by BBN: $Y_p = 0.2485 + 0.0016[(273.9\Omega_bh^2-6) + 100 (S-1)]$ More helium decreases electron density, increasing damping. Find $Y_p = 0.313 \pm 0.044$ from ACT.

Limitations of primary CMB

- CMB geometric degeneracy: distance depends on contents, and expansion rate.
- Can balance distance with geometry to keep peaks in same place.
- Can't see late-time structure growth

The late universe: CMB lensing T(n) T(n) T(n+d)

•Large scale structure potentials gravitationally deflect CMB photons by a lensing deflection angle d(n), typically few arcmins.

$$T(\mathbf{n})_{\text{lensed}} = T(\mathbf{n} + \mathbf{d}(\mathbf{n}))_{\text{unl}}$$
$$= T(\mathbf{n})_{\text{unl}} + d_i(\mathbf{n})\nabla_i T(\mathbf{n})_{\text{unl}}$$

•Measurement of the deflection field is a measurement of matter fluctuations AND the geometry of the universe.

Lensing shows up in TT

• An unlensed spectrum would have sharper features

•Test for lensing in spectrum by marginalizing over (unphysical) parameter A_L , scaling lensing potential. [Calabrese et al 2008]

• Expect A_L =1, and unlensed has A_L =0. See lensing at almost 3 σ level:

$$A_{L}=1.3 \pm 0.5^{+1.2}_{-1.0}$$
 (68, 95% CL)

Can lensing break the CMB degeneracy?

Measurement of the deflection field is a line of sight integral over matter fluctuations and the geometry of the universe:

Other late time cosmological parameters will also affect this spectrum

Reconstructing lensing from CMB maps

- Can estimate lensing deflection because it breaks Gaussianity
- Deflection spectrum ~ non-Gaussian part of lensed 4-point function

$$(2\pi)^{2}\delta(\mathbf{L} - \mathbf{L}') \ \hat{C}_{L}^{dd} = |N^{\kappa}(\mathbf{L})|^{2} \int \frac{d^{2}\boldsymbol{\ell}}{(2\pi)^{2}} \int \frac{d^{2}\boldsymbol{\ell}'}{(2\pi)^{2}} |g(\boldsymbol{\ell}, \mathbf{L})|^{2}$$
$$\times \left[T^{*}(\boldsymbol{\ell}) \ T^{*}(\mathbf{L} - \boldsymbol{\ell}) \ T(\boldsymbol{\ell}') \ T(\mathbf{L}' - \boldsymbol{\ell}') - \langle T^{*}(\boldsymbol{\ell}) \ T^{*}(\mathbf{L} - \boldsymbol{\ell}) \ T(\boldsymbol{\ell}') \ T(\mathbf{L}' - \boldsymbol{\ell}') \rangle_{\text{Gauss}} \right] (1)$$

[Hu & Okamoto (2002), Kesden, Cooray, Kamionkowski (2003)]

•Must subtract off Gaussian part (= unconnected part)

•Direct from data, obtain a ~Gaussian field with the same power spectrum from the observed one by randomizing phases of all the Fourier modes.

ACT detection of the lensing power spectrum

(Das, Sherwin et al. 2011)

CMB-only evidence for Λ !

- N(mass,z) is sensitive to dark energy and structure growth
- Big difficulty is getting mass from SZ decrement
- Also worry about source contamination

Planck collab 2011

Sehgal et al 2010, assuming SZ-M relation

Some 2008 ACT SZ-discovered Clusters

Menanteau et al. (2010), ApJ, 723, 1523

Some New Clusters on SDSS/Stripe 82

Menanteau et al. (in prep)

New Clusters on SDSS/Stripe 82

Menanteau et al. (in prep)

SZ-mass relation

do cosmology yet?

Sehgal et al 2010

ACTPol: polarization

2012-2015 – measure temperature and polarization of CMB to arcminute scales over ~4000 deg², plus deep regions over ~300 deg².

Measure primordial polarized spectrum (~15% pol) to I=3500. Low foreground contamination.

Measure lensing deflection field: distortion of CMB by large-scale structure. Measure neutrino mass (to 0.07eV), unique probe of early dark energy and GR.

ACTPol, Niemack et al 2010

Summary

• There are multiple physical components in small-scale microwave sky. A simple model fits the ACT 148 and 218 GHz data, and is consistent with observations by SPT.

• The ΛCDM model continues to fit the data. ACT's longer level arm constrains inflationary parameters, and probes non-standard physics (relativistic species, primordial helium, cosmic strings).

• ACT has now detected the lensing deflection power spectrum. It allows us to see evidence for Dark Energy from the CMB alone.

• ACT cluster counts are also starting to show us the late-time universe.

• ACT has finish taking data, and the full analysis is underway. ACTPol due online next year!