keV Sterile Neutrinos as Dark Matter

Manfred Lindner

Max-Planck-Institut für Kernphysik, Heidelberg

15th Paris Cosmology Cooloquium 2011, Observatoire de Paris, July 20-22, 2011

Physics Beyond the Standard Model

QED →QCD →SM $U(1)_{em} SU(3)_{C} SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y}$ Success story of d=4 renormalizable QFTs

TOE solving all problems does not (yet) exist → solve some problems → increasing levels of speculation:

1) new fields

- 2) extend gauge group
- 3) new concepts (SUSY, ...)
- 4) wild speculations

Theoretical reasons for BSM:

SM does not exist without cutoff (triviality) **Higgs-doublett = only simplest extension Gauge hierarchy problem** Gauge unification, charge quantization **Strong CP problem Unification with gravity** Why: 3 generations, which representations Many parameters (9+? masses, 4+? mixings)

Experimental BSM facts:

- Electro weak scale << Planck scale
- Gauge couplings almost unify
- Neutrinos have masses & large mixings
- Baryon asymetry of the Universe
- Dark Matter, Dark Energy, few $\geq 2\sigma$ hints?

→ BSM from a neutrino perspective

Adding neutrino masses to the SM -> SM+

New Physics: Neutrino Mass Terms

<u>Mass terms ~ mLR = (2,1)</u> 1) <u>Simplest possibility:</u> <u>add 3 right handed</u>

<u>neutrino fields</u>

Field	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	
$\begin{array}{c} L_Q = \left(\begin{array}{c} l_u \\ l_d \end{array} \right) \end{array}$	3	2	1/3	
r_u	3	1	4/3	
r_d	3	1	-2/3	
$L_L = \begin{pmatrix} l_\nu \\ l_e \end{pmatrix}$	1	2	-1	
r_{ν} ???	1	1	0	
r_e	1	1	-2	

NEW ingredients, 9 parameters -> SM+

15th Paris Cosmology Colloquium 2011

2) Maybe 3+N right handed neutrino fields

- → (6+N) x (6+N) mass matrix
- → how many of the 6+N eigenvalues are light (also for N=0)

4) Both
$$v_{\underline{R}}$$
 and new singlets / triplets:
• see-saw type II, III $m_{\nu} = M_{\underline{L}} - m_{\underline{D}} M_{\underline{R}}^{-1} m_{\underline{D}}^{T}$

6) Radiative neutrino mass generation

7-N) SUSY, extra dimensions, ...

Other effective Operators Beyond the SM

→ effects beyond 3 flavours

→ Non Standard Interactions = NSIs → effective 4f opersators

$$\mathcal{L}_{NSI} \simeq \epsilon_{lphaeta} 2\sqrt{2}G_F(\bar{
u}_{Leta} \ \gamma^{
ho} \
u_{Llpha})(\bar{f}_L\gamma_{
ho}f_L)$$

• integrating out heavy physics (c.f. $G_F \leftarrow \Rightarrow M_W$)

Grossman, Bergmann+Grossman, Ota+Sato, Honda et al., Friedland+Lunardini, Blennlow+Ohlsson+Skrotzki, Huber+Valle, Huber+Schwetz+Valle, Campanelli +Romanino, Bueno et al., Barranco+Miranda+Rashba, Kopp+ML+Ota, ...

Suggestive Seesaw Features

QFT: natural value of mass operators ←→ scale of symmetry

 $m_D \sim$ electro-weak scale

 $M_R \sim L$ violation scale \leftarrow ? \rightarrow embedding (GUTs, ...)

Numerical hints:

For $m_3 \sim (\Delta m_{atm}^2)^{1/2}$, $m_D \sim leptons \Rightarrow M_R \sim 10^{11} - 10^{16} \text{GeV}$ $\Rightarrow v$'s are Majorana particles, m_v probes $\sim \text{GUT scale physics!}$ \Rightarrow smallness of $m_v \notin \Rightarrow$ high scale of I_{\prime} , symmetries of m_D , M_R

2nd Look Questions

Quarks & charged leptons → hierarchical masses → neutrinos?

» less hierarchy in m_D or corr. hierarchy in M_R? → theoretically not connected!
» other version of see-saw? → type II, III, ...?
» Dirac masses?

Standard Expectation

3 Light Neutrinos (...assumed)

Mass & mixing parameters: m_1 , Δm_{21}^2 , $|\Delta m_{31}^2|$, sign(Δm_{31}^2)

Overview of Neutrino Mass Knowledge

Could there be Surprises?

Neutrino-less Double Beta Decay

Majorana $\nu \rightarrow 0\nu\beta\beta$ decay

<u>warning:</u> other lepton number violating processes may exist...

2νββ decay of ⁷⁶Ge observed: $\tau = 1.5 \times 10^{21}$ y

- signal at known Q-value
- 2vββ background (resulution)
- nuclear backgrounds
 - ➔ use different nuclei

Neutrino Masses from Double β-Decay

Comments:

- cosmology: limitation by systematical errors → ~another factor 5?
- $0\nu\beta\beta$ nuclear matrix elements ~factor 1.3-2 theoretical uncertainty in m_{ee}
- $\Delta m^2 > 0$ allows complete cancellation

 \rightarrow 0v $\beta\beta$ signal not guaranteed, but cancelation appears unlikely

0νββ from Alternative $\Delta L=2$ Operators

M. Lindner

A SUSY Example

Direct, TeV scale short range mediation w/o intermediate light ν , e.g.

ΔL=2 Operators and TeV Scale Physics

L-R symmetry: heavy N's

Relative strength of 'light' and 'heavy' $0\nu\beta\beta$ amplitudes:

SV-induced Neutrino Masses

General Lorentz-invariant Lagrangian for $0\nu\beta\beta$ (point operator) $\mathcal{L} = \frac{G_F^2}{2} m_p^{-1} \left(\epsilon_1 J J j + \epsilon_2 J^{\mu\nu} J_{\mu\nu} j + \epsilon_3 J^{\mu} J_{\mu} j + \epsilon_4 J^{\mu} J_{\mu\nu} j^{\nu} + \epsilon_5 J^{\mu} J j_{\mu}\right)$

Outcome:

M. Dürr, ML, A. Merle

If other $\Delta L=2$ physics drives $0\nu\beta\beta \rightarrow SV$ gives $\delta m_{\nu} = 10^{-24} \text{ eV}$

mass correction too small to explain observed masses and splittings
 explicit neutrino mass operators required
 Dirac: 0vββ essentially unrelated to neutrino masses
 other BSM
 Majorana: dominates over SV contribution

0ν $\beta\beta$ may be a mixture of Majorana mass and other Δ L=2 physics → mimics higher Majorana neutrino mass

Neutrinos as Dark Matter?

Could Neutrinos be Dark Matter?

- Active neutrinos would be perfect Hot Dark Matter → ruled out:
 - destroys small scale structures in cosmological evolution
 - required neutrino masses much too small → maybe HDM component

• <u>keV sterile neutrinos: Warm Dark Matter</u> → workes very well:

- \rightarrow relativistic at decoupling
- \rightarrow non-relativistic at radiation to matter dominance transition
- OK for $M_X \simeq$ few keV with very tiny mixing
- reduced small scale structure **>** smoother profile, less dwarf satellites
- → scenario where one sterile neutrino is keV-ish, the others heavy
- \rightarrow tiny active sterile mixings $O(m_v/M_R)$
- \rightarrow observational hints from astronomy

- hints that a keV sterile particle may exist → right-handed neutrino?
Biermann, Kusenko & Segre, Fuller et al., Biermann & Kusenko, Stasielak et al., Loewenstein et al., Dodelson, Widrow, Dolgov, ...

Non-standard Sterile Neutrino Scenarios

Evidences for Light Sterile Neutrinos

Particle Physics:

Reactor anomaly, LSND, MiniBooNE, MINOS, Gallex...

- \rightarrow evidences for light sterile v's?
- → see talk by A. Smirnov
- → New and better data / experiments are needed to clarify the situation
- maybe something exciting around the corner?
- ➔ but eV scale and sizable mixings

Astrophysics:

- e.g. effects of keV-ish sterile neutrinos on pulsar kicks Kusenko, Segre, Fuller, Mocioiu, Pascoli

- •••

→ see talk by P. Biermann

Extra Sterile Neutrinos & CMB

3 active massless neutrinos + N_s massive neutrinos

3 active massive neutrinos + N_s massless neutrinos

J. Hamann et al → eV scale masses

Cosmological Indications for Sterile Neutrinos

<u>Cosmology and structure formation:</u> WDM works very well → see talks at this conference

BBN – 'feels' extra neutrino-like particles:

N_v <u>~ 3.7 + 1</u>

E. Aver, K. Olive, E. Skillman (2010) Y. Izotov, T. Thuan(2010)

Observing keV-ish Neutrino DM

- LHC
 - sterile neutrino DM is not observable
 - WIMP-like particles still possible but not DM
- direct searches -> see talk by Ch. Weinheimer
 sterile neutrino DM very difficult; maybe in β-decay (MARE)
- astrophysics/cosmology → at some level: keV X-rays

→ sterile neutrino DM is decaying into active neutrinos

- decay $N_1 \rightarrow \overline{\nu} \nu \nu$, $N_1 \rightarrow \overline{\nu} \overline{\nu} \nu$

not very constraining since
 τ >> τ_{Universe}

• - radiative decays $N_1 \rightarrow v\gamma$

- so far: observational limit on active-sterile mixing angle

$$\begin{split} &\Gamma_{N_1 \to v\gamma} \simeq 5.5 \times 10^{-22} \theta_1^2 \left(\frac{M_1}{1 \text{ keV}}\right)^5 \text{s}^{-1} \\ &\theta_1^2 \lesssim 1.8 \times 10^{-5} \left(\frac{1 \text{ keV}}{M_1}\right)^5 \end{split}$$

- mixing tiny, but naturally expected to be tiny: O(scale ratio)

keV Neutrinos as WDM

The vMSM

Asaka, Blanchet, Shaposhnikov, 2005 Asaka, Shaposhnikov, 2005

Particle content:

- Gauge fields of SU(3)_c x SU(2)_W x U(1)_Y: γ , W_±, Z, g
- Higgs doublet: Φ=(1,2,1)

	SU(3)c	${\rm SU}(2)_W$	$U(1)_{Y}$	U(1) _{em}	
$\begin{pmatrix} \mathbf{u} \\ \mathbf{d} \end{pmatrix}_{\mathbf{I}}$	3	2	+1/3	(+2/3)	
u _R	3	1	+4/3	+2/3	
d _R	3	1	-2/3	-1/3	
$\begin{pmatrix} \mathbf{v}_{e} \\ e \end{pmatrix}_{I}$	1	2	-1		
e _R	1	1	-2	-1	
Ν	1	1	0	0	

x3 generations

 \rightarrow lepton sector more symmetric to the quark sector

- → Majorana masses for N
- → choose for one sterile v ~keV mass → exceeds lifetime of Universe

• Matter

Virtue and Problem of the vMSM

✓MSM: Scenario with sterile v and tiny mixing → never enters thermal equilibrium
 → requires non-thermal production from other particles (avoid over-closure)
 → new physics before the beginning of the thermal evolution sets abundance

Alternative Scenario with Thermal Abundance

An alternative scenario: Bezrukov, Hettmannsperger, ML

- Three right-handed neutrinos N_1 , N_2 , N_3
- Dirac and Majorana mass terms
- N Charged under some (BSM) gauge group **>** scale M (~sterile)
- Specific example: LR-symmetry $SU(3)_c \ge SU(2)_L \ge SU(2)_R \le SU(2)_R \le SU(2)_R \ge SU(2)$

Roles played by the sterile (~right-handed) neutrinos:

*N*₁ − Warm Dark Matter
Mass
$$M_1 \sim \text{keV}$$

Lifetime $\tau_1 > \tau_{\text{Universe}} \sim 10^{17} \text{ s}$
*N*_{2,3} − dilute entropy after DM decoupling
Mass $M_{2,3} > \text{GeV}$
Lifetime $\tau_{2,3} \lesssim 0.1 \text{ s}$

Obtaining the right Abundance

Sterile Neutrino DM Freeze-Out & Abundance

Decoupling of N₁ in early Universe: sterile neutrino DM is light \rightarrow freezout while relativistic \rightarrow calculation like for active neutrinos + suppression of annihilation x-section by M

Freeze-out temperature:

Abundance of N₁ today:

$$\begin{aligned} \mathcal{T}_{\rm f} &\sim g_{*{\rm f}}^{1/6} \left(\frac{M}{M_W}\right)^{4/3} (1\div 2) \; {\rm MeV} \\ \frac{\Omega_N}{\Omega_{\rm DM}} &\simeq \frac{1}{S} \left(\frac{10.75}{g_{*{\rm f}}}\right) \left(\frac{M_1}{1\,{\rm keV}}\right) \times 100 \end{aligned}$$

Required entropy generation factor:

$$m{S} \simeq 100 \left(rac{10.75}{g_{*\mathrm{f}}}
ight) \left(rac{M_{\mathrm{1}}}{\mathrm{1 \, keV}}
ight)$$

Entropy Generation by out-of Equilibrium Decay

Heavy particle (here: N_3) dropping out of thermal equilibrium while relativistic $T_f > M_2$: \rightarrow bounds gauge scale from below

$$M > rac{1}{g_{*f}^{1/8}} \left(rac{M_2}{{
m GeV}}
ight)^{3/4} (10 \div 16) {
m TeV}$$

- → sufficiently long lived → become non-relativistic
- ➔ dominates expansion of Universe during its decay
- → entropy generation factor → $S \simeq 0.76 \frac{\bar{g}_*^{1/4} M_2}{g_* \sqrt{\Gamma_2 M_{\text{Pl}}}}$

 \rightarrow fixes decay width Γ_2

Summary of Constraints

BBN $\tau_2 > 0.1 \div 2 \sec$

The entropy is effectively generated if the right-handed gauge scale is

$$M > g_{*f}^{-1/8} \left(\frac{M_2}{1 \text{ GeV}}\right)^{3/4} (10 \div 16) \text{ TeV}$$

2

Justifying keV sterile Neutrinos

Generating keV-ish Sterile Neutrinos

Possible scenario: See-saw + a reason why 1 sterile v is light

Light Sterile Neutrinos from $L_e-L_u-L_\tau$

- Flavour symmetries have been studied to explain apparent regularities of masses and mixing: A4, S3, D5, ...
 - → implications for sterile sector?
 - \rightarrow could the same symmetries explain a keV-ish sterile v?

Model by Lavoura & Grimus \rightarrow modified ML, Merle, Niro SM + v_{iR} + softly broken U(1) $\leftarrow \rightarrow$ $\mathcal{F} \equiv L_e - L_\mu - L_\tau$ type II see-saw \rightarrow +Higgs triplet $\Delta = \begin{pmatrix} \Delta^+/\sqrt{2} & \Delta^{++} \\ \Delta^0 & -\Delta^+/\sqrt{2} \end{pmatrix}$

	L_{eL}	$L_{\mu L}$	$L_{\tau L}$	e_R	μ_R	$ au_R$	N_{1R}	N_{2R}	N_{3R}	ϕ	Δ
$ \mathcal{F} $	1	-1	-1	1	-1	-1	1	-1	-1	0	0

Neutrino Mass Terms

• Mass matric for right-handed neutrinos:

$$\mathcal{L}_{\text{mass}} = -M_R^{12} \ \overline{(N_{1R})^C} N_{2R} - M_R^{13} \ \overline{(N_{1R})^C} N_{3R} + h.c.$$

• Dirac masses

$$\mathcal{L}_{\text{mass}} = -Y_D^{e1} \ \overline{L_{eL}} \ \tilde{\phi} \ N_{1R} - Y_D^{\mu 2} \ \overline{L_{\mu L}} \ \tilde{\phi} \ N_{2R} - Y_D^{\mu 3} \ \overline{L_{\mu L}} \ \tilde{\phi} \ N_{3R} - -Y_D^{\tau 2} \ \overline{L_{\tau L}} \ \tilde{\phi} \ N_{2R} - Y_D^{\tau 3} \ \overline{L_{\tau L}} \ \tilde{\phi} \ N_{3R} + h.c.,$$

• In addition: Triplet masses

$$\mathcal{L}_{\text{mass}} = -Y_L^{e\mu} \ \overline{(L_{eL})^C} \left(i\sigma_2 \Delta \right) L_{\mu L} - Y_L^{e\tau} \ \overline{(L_{eL})^C} \left(i\sigma_2 \Delta \right) L_{\tau L} + h.c.$$

• Mass matrix in the basis

$$\Psi \equiv \left((
u_{eL})^C, (
u_{\mu L})^C, (
u_{\tau L})^C, N_{1R}, N_{2R}, N_{3R} \right)^T$$

- $m_D^{\alpha i} \ll m_L^{\alpha \beta} \ll M_R^{ij}$ (separation scenario),
- $m_L^{\alpha\beta} \ll m_D^{\alpha i} \ll M_R^{ij}$ (type II see-saw scenario), $\rightarrow \text{massless sterile}$
- $m_L^{\alpha\beta} \sim m_D^{\alpha i} \ll M_R^{ij}$ (hybrid scenario).

det(M_{ij}) =0 → M₁=0 → massless sterile state + soft breaking → light sterile v

Implications for See-Saw

$$\mathcal{L}_{\text{mass}} = -\frac{1}{2} (\overline{\tilde{\nu}_{aL}^c}, \overline{\tilde{N}_{aR}}) \begin{pmatrix} M_L & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \tilde{\nu}_{aL} \\ \tilde{N}_{aR}^c \end{pmatrix} + \text{H.c.}$$

• Usual flavour (=tilde) to mass basis rotation

$$\begin{pmatrix} \tilde{\nu}_{aL} \\ \tilde{N}^c_{aR} \end{pmatrix} \simeq \begin{pmatrix} 1 & (M_R^{-1} m_D^T)^{\dagger} \\ -M_R^{-1} m_D^T & 1 \end{pmatrix} \begin{pmatrix} U & 0 \\ 0 & V_R \end{pmatrix} \begin{pmatrix} \nu_{iL} \\ N^c_{IR} \end{pmatrix}$$

• U = PMNS matrix, $V_R = mixing in right-handed sector$

 $M_L - m_D M_R^{-1} m_D^T = U^* \cdot \operatorname{diag}(m_1, m_2, m_3) \cdot U^{\dagger} \longrightarrow \mathbf{M}_L = \mathbf{0}: \mathbf{Type-I}$ $M_R = V_R^* \cdot \operatorname{diag}(M_1, M_2, M_3) \cdot V_R^{\dagger}$

• Mixing angles between mass states, sterile neutrinos and flavour states:

$$\theta_{aI} \equiv \frac{(m_D V_R)_{aI}}{M_I}$$
 and $\theta_I^2 \equiv \sum_{a=e,\mu,\tau} |\theta_{aI}|^2$

←→ strength of interaction (decay) of sterile neutrinos

- Current best fit values: $\Delta m_{sol}^2 = (7.65^{+0.69}_{-0.6}) \times 10^{-5} \text{ eV}^2$ $\Delta m_{atm}^2 = (2.4^{+0.35}_{-0.33}) \times 10^{-3} \text{ eV}^2.$
- Casas-Ibarra parametrization for type-I and II (Akhmedov, Rodejohann)

$$\theta_I^2 = \frac{\left[\sqrt{M_R}R^T m_\nu^{\text{diag}} R^* \sqrt{M_R}\right]_{II}}{M_I^2} , \ m_\nu^{\text{diag}} = \text{diag}(m_1, m_2, m_3)$$

• assume (convention) $\mathbf{m}_1 < \mathbf{m}_2 < \mathbf{m}_3$ \rightarrow we get for the first two sterile v's $M_1 \theta_1^2 = m_3 |\sin\omega_{13}|^2 + m_2 |\cos\omega_{13}|^2 |\sin\omega_{12}|^2$ $+ m_1 |\cos\omega_{13}|^2 |\cos\omega_{12}|^2$, $M_2 \theta_2^2 = m_3 |\cos\omega_{13}|^2 |\sin\omega_{23}|^2 + m_2 |\cos\omega_{23} \cos\omega_{12}$ $- \sin\omega_{23} \sin\omega_{13} \sin\omega_{12}|^2 + m_1 |\cos\omega_{23} \sin\omega_{12}$ $+ \sin\omega_{23} \sin\omega_{13} \cos\omega_{12}|^2$. • The relation $|z-w| \ge ||z| - |w||$ leads then to the following inequalities:

$$\begin{split} M_1 \theta_1^2 &\geq m_2 \{ \sin^2 \omega_{13} + \cos^2 \omega_{13} \sin^2 \omega_{12} \}, \\ M_2 \theta_2^2 &\geq m_2 \{ \cos^2 \omega_{13} \sin^2 \omega_{23} + (|\cos \omega_{23}| |\cos \omega_{12}| \\ &- |\sin \omega_{23}| |\sin \omega_{13}| |\sin \omega_{12}|)^2 \}. \end{split}$$

• The minimum of the sum on the *rhs* is $m_2 \rightarrow b$

$$M_1 \theta_1^2 + M_2 \theta_2^2 \ge m_2 \ge \Delta m_{sol}$$
 (*)

In words: One cannot generate active v masses with type-I see-saw without sufficient mixings between active and sterile neutrinos

→ conflict with bounds:

Entropy generation:

→ violates bound (*)

X-ray bound:

→ type-I see-saw impossible → type II

 $egin{aligned} M_2 heta_2^2 &\lesssim 1.8 imes 10^{-3}ar{g}_*^{1/2} \left(rac{ ext{GeV}}{M_2}
ight)^2 \left(rac{ ext{keV}}{M_1}
ight)^2 \ M_1 heta_1^2 &\lesssim 2.7 imes 10^{-3} \left(rac{ ext{1.6 keV}}{M_1}
ight)^4 \end{aligned}$

Working example with type II see-saw

Exactly LR-symmetric model:

Conclusions

- A keV-ish sterile neutrino is a very well motivated and good working Warm Dark Matter candidate ←→ finite v-masses
- Simplest realization: vMSM → requires non-thermal production
- Alternative: Sterile v's which are charged under some extended gauge group → abundance from thermal production → interesting constrains
 - small mixings from X-ray constraints and entropy generation (DM abundance)
 - masses bound by BBN

→ Implications for neutrino mass generation:

- type-I see-saw not possible
- type-II works $\leftarrow \rightarrow$ very natural in gauge extensions
- requires one sterile neutrino to be light

➔ More general scenarios require just some mechanism which 'naturally' explains light sterile neutrinos