the theo the mass & mixing

A. Yu. Smirnov

International Centre for Theoretical Physics, Trieste, Italy

July 21, 2011, The international school Daniel Chalonge

the theory of neutrino mass & mixing does not exist

- nature of neutrino mass:
 Dirac vs. Majorana,
 soft vs. hard;
- absolute mass scale;
- number of neutrinos

L Neutrino mass & mixing: what do we know

Absolute mass scale

MINOS, atmospheric neutrinos

 $m > \sqrt{\Delta m_{31}^2} > 0.045 \text{ eV}$

COSMOLOGY: bound on the sum of neutrino masses

 $m < \Sigma/3 < 0.2 - 0.3 eV$

Kinematical measurements

Бруно Понтекоры

Neutrino mixing

Flavor neutrino states:

correspond to certain charged leptons

- interact in pairs
- flavor -characteristic
 of interaction

$$n \rightarrow p + e^{-} + \overline{v}_{e}$$
$$\pi \rightarrow \mu + v_{\mu}$$

Mass eigenstates

$$v_{f} = U_{PMNS} v_{mass}$$

Mixing parameters, parameterization

$$\tan^2 \theta_{12} = |U_{e2}|^2 / |U_{e1}|^2$$

 $\tan^2 \theta_{23} = |U_{\mu 3}|^2 / |U_{\tau 3}|^2$

Rotation in 3D space $v_f = U_{PMNS} v_{mass}$ $\mathbf{U}_{\mathsf{PMNS}} = \mathbf{U}_{23} \ \mathbf{I}_{\delta} \ \mathbf{U}_{13} \ \mathbf{I}_{-\delta} \ \mathbf{U}_{12}$

Normal mass hierarchy

$$\Delta m_{atm}^2 = \Delta m_{32}^2 = m_3^2 - m_2^2$$
$$\Delta m_{sun}^2 = \Delta m_{21}^2 = m_2^2 - m_1^2$$

T2K: 1-3 mixing

K Abe, et al [The T2K Collaboration] 1106.2822 [hep-ex]

for maximal 2-3 mixing

 $sin^2 2\theta_{13} \sim 0.11$

Background = 1.5+/-0.3

G.L Fogli et al., 1106.6028 [hep-ph]

• TBM

• QLC

New reactor fluxes - shift by arrows

Implications

Strongly broken TBM?

Quark-lepton complementarity:

No special symmetry in the leptonic sector Typical for flavor models of TBM: $sin\theta_{13} \sim sin^2\theta_c$

$$sin^2\theta_{13} \sim 2sin^2\theta_C$$

II. To the theory of neutrino mass & mixing

"Standard" neutrino scenario

1. There are only 3 types of light neutrinos

2. Interactions are described by the Standard (electroweak) model

3. Masses and mixing have pure vacuum origin; they are generated at the EW and probably higher mass scales

Hard" masses
High scale see-saw
no special symmetries
no connection to DM

Smallness of $m_{\rm v}$

New large mass scale

See-saw mechanism

Extra dimensions

Overlap mechanism different localization

Forbid the usual Dirac mass terms

25

Radiative generation

symmetri

High dimension operators
``Chiral mismatch"

Properties of RH neutrino components

P. Minkowski T. Yanagida M. Gell-Mann, P. Ramond, R. Slansky S. L. Glashow R.N. Mohapatra, G. Senjanovic

Type 2

If $M_R \gg m_D$

 $\mathbf{m}_{n} = - \mathbf{m}_{D}^{T} \mathbf{M}_{R}^{-1} \mathbf{m}_{D}$

Overlap in extra dimensions

Right handed components are localized differently in extra dimensions

small Dirac masses due to overlap suppression:

C1

-

Small effective couplings

effective coupling produced by non-renormalizable operators:

renormalizable coupling is suppressed by symmetry

Assuming that it is not accidental and there is certain fundamental physics behind

Based on observation: lepton mixing = maximal mixing quark mixing

With different implications The same principle as in quark sector Large mixing is related to smallness of neutrino mass and weak mass hierarchy of neutrinos

TBM-symmetry

Invariance: Vi^T m_{TBM} Vi = m_{TBM}

$$S = \frac{1}{3} \begin{pmatrix} -1 & 2 & 2 \\ \dots & -1 & 2 \\ \dots & \dots & -1 \end{pmatrix} \qquad U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

 $T^+ (m_e^+ m_e)T = m_e^+ m_e$

The mass matrix of the charged leptons T = is diagonal due to symmetry

$$= \begin{pmatrix} 1 & 0 & 0 \\ \dots & \omega^2 & 0 \\ \dots & \dots & \omega \end{pmatrix}$$

$$ω = \exp(-2i\pi/3)$$

S, T, U -elements of S_4

Symmery breaking

No exact flavor symmetry

Mixing appears as a result of different ways of the flavor symmetry breaking in neutrino and charged lepton sectors

Symmetry is not broken completely; residual symmetries in the neutrino and charged lepton sectors are different

In turn, this split originates from different flavor assignments of the RH components of N° and I° and different higgs multiplets

Flavons and Flavored higgses

Flavons

Singlet of gauge symmetry group

Separation of the EW symmetry and flavor symmetry breakings

$$\frac{1}{\Lambda^{n-1}}$$
 L e^c H fⁿ

 Λ - above GUT scale?

 \rightarrow difficult to test

Flavored higgses

Many Higgs doublets - tests at LHC

Strongly restricted:

- FCNC
- anomalous magnetic moment of muon

<u>1' × 1" ~ 1</u>

E. Ma G Branco, H P Nilles

Symmetry group of even permutations

Symmetry of tetrahedron

no U =
$$A_{\mu\tau}$$

invariants

2 x 2 = 1 + 1' + 2 1' x 2 = 2

Numerology without underlying framework Interplay of various independent contributions

1. Experiment: deviations from TBM mixing

RGE-effects Symmetry mass relations can be broken maximally

2. No simple and convincing model for TBM

- Complicated structure, large number of assumptions and new parameters
- Follows from certain correlation of unrelated sectors

3. Often: no connection between masses and mixing additional symmetries are introduced

4. Inclusion of quarks: further complication. GUT - additional requirements

Based on relations:

$$\theta_{12}^{I} + \theta_{12}^{I} \sim \pi/4$$

$$\theta_{23}^{I} + \theta_{23}^{I} \sim \pi/4$$

A.S. M. Raidal H. Minakata

qualitatively:

- 2-3 leptonic mixing is close to maximal because 2-3 quark mixing is small
- 1-2 leptonic mixing deviates from maximal substantially because
 1-2 quark mixing is relatively large

Possible implications

``Lepton mixing = bi-maximal mixing - quark mixing"

Quark-lepton symmetry

Existence of structure which produces bi-maximal mixing Unification or family symmetry

See-saw? Properties of the RH neutrinos

Bi-maximal mixing

Two maximal rotations *F. Vissani V. Barger et al*

$$U_{bm} = \begin{pmatrix} \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} & 0 \\ -\frac{1}{2} & \frac{1}{2} & \sqrt{\frac{1}{2}} \\ \frac{1}{2} & -\frac{1}{2} & \sqrt{\frac{1}{2}} \\ \frac{1}{2} & -\frac{1}{2} & \sqrt{\frac{1}{2}} \end{pmatrix}$$

- maximal 2-3 mixing
- zero 1-3 mixing
- maximal 1-2 mixing
- no CP-violation

In seesaw: structure of Majorana mass matrix of RH neutrinos

In the lowest approximation:

$$V_{quarks} = I, V_{leptons} = V_{bm}$$

 $m_1 = m_2 = 0$

Corrections generate

- mass splitting
- CKM and
- deviation from bi-maximal

Deviations from BM due to high order corrections

P. Ramond

Altarelli et al

Complementarity: implies quark-lepton symmetry or GUT, or horizontal symmetry

$$sin\theta_{c} = \sqrt{\frac{m_{\mu}}{m_{\tau}}}$$

Weak complementarity or Cabibbo haze

Corrections from high order flavon interactions which generate simultaneously Cabibbo mixing and deviation from BM, GUT is not necessary

or

Neutrino and unification

Hagedorn Schmidt AS

RH-neutrino

Hidden sector

Something is missed?

 $d_r^{\circ}, d_{b}^{\circ}, d_{b}^{\circ},$

ď

S

 $\frac{u_r, u_b, u_j, v}{d_r, d_b, d_j, e}$

- Decrease effective scale
- Enhance mixing
- Produce zero order mixing
- Screen Dirac mass hierarchies
- Produce randomness (anarchy)
- Seesaw symmetries

III. Sterile neutrinos

Sterile neutrino by sterile neutrino by sterile neutrino by statements of the sterile neutrino by sterile

15 руно Понтекори Sov. Phys. JETP 26 984 (1968)

in the context of idea of neutrino-antineutrino oscillations

Light

No weak interactions: - singlets of the SM symmetry group RH - components of neutrinos

Couple with usual neutrinos via (Dirak) mass terms

Mix with active neutrinos

may have Majorana mass terms maximal mixing?

New evidences?

LSND

Double-Chooz

N2+ GeCl4 GaCL

SAGE

Veto Region

LSND/MiniBooNE: vacuum oscillations

BUGEY, CHOOZ, CDHS, NOMAD

For reactor and source experiments $P \sim 4|U_{e4}|^2(1 - |U_{e4}|^2)$

additional radiation in the universebound from LSS?

With new reactor data:

 Δm_{41}^2 = 1.78 eV² (0.89 eV²) U_{e4} = 0.15 U_{µ4} = 0.23

3+2 fit and consistency

J. Kopp, M Maltoni, T. Schwetz

Cosmological bounds

run 2 (red) - Supernova Ia Union Compilation 2 (in add) J R Kristiansen, O Elgaroy 1104.0704 [astro-ph]

Inverse approach:

wCDM + $2v_{s}$

1). w < -1

+ BBN

ruling out Λ

2). Age of the Universe 12.58 +/- 0.26 Gyr

too young?

The oldest globular clusters 13.4 +/- 0.8 +/- 0.6 Gyr

Alma X Conzalelez-Morales, et al 1106.5052 [astro-ph,CO]

MINOS: Searches for sterile

Accelerator neutrinos

MINOS bound

E = 200 MeV

 ν_{μ} - ν_{s} mixing

In assumption of no-oscillations in the ND

 $|U_{\mu4}|^2 < 0.015$ (90% CL) $\theta_{13} = 0$

 $|U_{\mu4}|^2 < 0.019 (90\% CL)$ $\theta_{13} = 11.5^{\circ}$

LSND/MiniBooNE: $|U_{\mu4}|^2 > 0.025$ $\Delta m_{41}^2 < 0.5 \text{ eV}^2$

For $m_{ss} \sim 1 \text{ eV}$ $\tan \theta_{js} = m_{js}/m_{ss} \sim 0.2 - \text{ is not small}$

produces large corrections to the active neutrino mass matrix $\delta m_{ij} \sim - \tan \theta_{is} \tan \theta_{js} m_{ss} \sim 0.04 m_{ss} m_{ss} \gg m_{ab}, m_{as}$

In general can not be considered as small perturbation!

Effect can be small if

Active neutrino spectrum is quasi degenerate m_{SS} ~ m_{ab} $m_{eS} m_{\mu S} m_{\tau S}$ have certain symmetry

J. Barry, W. Rodejohann, He Zhang arXiv: 1105.3911

matrix e.g. from see-saw

Induced mass matrix due to mixing with nu sterile

 δm can change structure (symmetries) of the original mass matrix completely (not a perturbation)

Be origin of difference of

H Nunokawa O L G Peres R Zukanovich-Funchal Phys. Lett B562 (2003) 279

5 Choubey HEP 0712 (2007) 014

 ν_{μ} - ν_{s} oscillations with Δm^{2} ~ 1 eV² are enhanced in matter of the Earth in energy range 0.5 – few TeV

This distorts the energy spectrum and zenith angle distribution of the atmospheric muon neutrinos

> S Razzaque and AYS , 1104.1390, [hep-ph]

MSW resonance dip

- S = N(osc.)/N(no osc.)
- $E_{th} = 0.1 \text{ TeV}$

Zenith angle distribution

v_s - mass mixing case Free normalization and tilt factor

Shining in sterile

$4p + 2e^{-} \rightarrow ^{4}He + 2v_{e} + 26.73 \text{ MeV}$

Solar neutrino experiments

BOREXINO

SuperKamiokande

Homestake

 v_e - survival probability from solar neutrino data vs LMA-MSW solution

Very light sterile neutrino

- additional radiation in the Universe
- no problem with LSS (bound on neutrino mass)

Survival probability

 $sin^2 2\alpha = 10^{-3}$ (red), 5 10⁻³ (blue)

KamLAND solar

S. Abe, at al., [The KamLAND collaboration] 1106.0861 [hep-ex]

BOREXINO: Be line

Extra radiation in the Universe

Mixing of v_s in v_3

 $v_3 = \cos\beta v_{\tau}' + \sin\beta v_s$

where $v_{\tau}' = \cos\theta_{23} v_{\tau} + \sin\theta_{23} v_{\mu}$

$$\Delta m_{30}^2 \sim 2.5 \ 10^{-3} \ eV^2$$

Atmospheric neutrinos: $sin^2\beta < 0.2 - 0.3$ (90%)

MINOS:

 $sin^2\beta < 0.23$ (90%)

Production of steriles in the Early universe

M Cirelli G Marandella A Strumia F Vissani

Phenomenology: SN

Atmospheric IceCube DeepCore

Conclusions

Understanding neutrino mass and mixing is on cross-roads: Discrete symmetries? TBM accidental? QLC? Quark-lepton unification? Preferable: GUT + seesaw + fermion singlets (hidden sector) with some symmetries?

Relation to CDM, WDM?

New (still controversial) evidences of new neutrino states = sterile neutrinos. Implications for Cosmology: additional radiation in the Universe in epoch of decoupling and additional HDM.

> Tests: with Solar and atmospheric neutrinos IceCube, deep-core IceCube

Additional slides

If
$$v_R$$
 exists: $M_R \sim \Lambda$

Η ~ Λ²

Dirac mass

- small Yukawa coupling
- additional doublet with small VEV

DM?

Data show both order, regularities and some degree of randomness

Different pieces of data testify for different underlying physics

No simple relation between masses and mixing parameters which could testify for certain simple scenario

No simple explanation is expected?

BM - Symmetry

BM mass relations

 $\mathbf{m}_{\mathbf{e}\mu}$ = $\mathbf{m}_{\mathbf{e}\tau}$

 $\mathbf{m}_{\mu\mu}$ = $\mathbf{m}_{\tau\tau}$

· / T

 $m_{ee} = m_{\mu\mu} + m_{\mu\tau}$

Invariance:

e:
$$V_i \cdot m_{BM} \cdot V_i = m_{BM}$$

$$S_{BM} = \begin{pmatrix} 0 & -\sqrt{\frac{1}{2}} & -\sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{2}} & \frac{1}{2} & -\frac{1}{2} \\ -\sqrt{\frac{1}{2}} & -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \quad U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

The mass matrix of the charged leptons is diagonal due to symmetry with respect to transformations:

T = diag(-1, -i, i) T, S_{BM} generators of S_4

With reactor anomaly global fit of data in terms of nu-sterile becomes better Limit on U_{e4} becomes weaker

 $|U_{e4}|^2: 0.02 \rightarrow 0.04$

Smaller values of $U_{\mu4}$ are allowed to explain LSND/MiniBooNE – less tension with SBL experiment bounds

 $|U_{\mu4}|^2: 0.04 \rightarrow 0.02$

Clobal fit3 + 2
scheme V_4 V_5 J Kopp, M. Maltoni, T.Schwetz
1103.4570 [hep-ph] $M_{41}^2 = 0.47 \text{ eV}^2$ $\Delta m_{51}^2 = 0.87 \text{ eV}^2$ $U_{e4} = 0.128$ $U_{e5} = 0.138$ $U_{\mu4} = 0.165$ $U_{\mu5} = 0.148$

$$v_{s} = v_{s} \int_{v_{\mu}} v_{f} = v_{23} v_{\alpha} \int_{v_{2}}^{v_{0}} v_{3} \int_{v_{2}}^{v_{0}} v_{2}$$

 v_{s} mixes in the mass states v_3 and v_0

 $v_0 = -\sin\alpha \tilde{v}_3 + \cos\alpha v_s$ $v_3 = \cos\alpha \tilde{v}_3 + \sin\alpha v_s$ $v_2 = \tilde{v}_2$ where $\tilde{v}_3 = \cos\theta_{23} v_{\tau} + \sin\theta_{23} v_{\mu}$ $\tilde{v}_2 = \cos\theta_{23} v_{\mu} - \sin\theta_{23} v_{\tau}$

 $\nu_{\text{s}}~$ mixes with $\widetilde{\nu}_{3}$

Propagation basis:

 $v_s, \tilde{v}_3, \tilde{v}_2$

Evolution is reduced to 2v-problem exactly

Probabilities

D. Henandez A.S.

 $P(v_{\mu} \rightarrow v_{\mu})$

Near
Detector
$$r_{NC} = \frac{n_{NC}}{n_{NC}^{0}}$$

Far $\frac{P}{r_{NC}}$

Light neutrinos and model of the Unive

Neutrino as dark energy Hot dark matter and structure formation Extra radiation in the Universe Aspects related to the main topic of the school In connection to dark matter.

Level crossing scheme

Normal mass hierarchy in the flavor block; m₀ ~ 1 eV

Three new level crossings

$$V_e - V_s = \sqrt{2} G_F (n_e - n_n / 2)$$

 v_s mass mixing scheme:

$$U_f = U_{23} U_{\alpha}$$

Propagation basis

$$\nu_{\rm f} = U_{\text{23}} ~\widetilde{\nu}$$

 v_{s} mixes in the mass states v_3 and v_0

 $\Delta m_{01}^2 > (0.2 - 2) \ 10^{-5} \ eV^2$ sin² 2 α = 10⁻⁴ - 10⁻³

> non-adiabatic level crossing

Mixing scheme and transitions

 U_{θ} - rotation in 12-plane on θ_{12} U_{α} - rotation in 01- plane on α

 ν_{s} mixes in ν_{0} and ν_{1}

Scheme of transitions

Level crossing scheme

P. De Holanda, A.S.

Mixing with the third active state

A_4 symmery breaking

`accidental" symmetry due to particular selection of flavon representations and configuration of VEV's

In turn, this split originates from different flavor assignments of the RH components of N^c and l^c and different higgs multiplets

Additional slides

1-3 mixing: global fit

Direct connection

L	_ight	t j			-lot	DM	Inf	luence	, ation		
neutrir		rinos	10 <i>5</i>				L3.	5 Tormation		Clumping	
	[7		\searrow				At lea of the	ast two em are) F(S1	orm tructures
		5						non-relativi		stic	
As pr of DN	obe, N			New neut stat	rino es						_
appear in annihilation or decay of DM					Hot,	wart	n DM				
parna		Searc signal detec	h for with tors	DM neutrino							

Global fit of oscillation data

M. C. Gonzalez-Garcia, M. Maltoni, J. Salvado

with 90% CL bounds from different experiments in assumption that true value $\sin^2\theta_{13} = 0$

90, 95, 99, 3σ CL contours

RH neutrino components have large Majorana mass

$$\mathbf{m}_{v} = -\mathbf{m}_{D}^{T} \frac{1}{M_{R}} \mathbf{m}_{D}$$

C Giunti, M Laveder 1107.1452 [hep-ph]

Extra radiation in the Universe

Effective number of neutrino species

$$N_{eff} = 4.34 + 0.86 - 0.88$$
 (68 % CL)

- N_{eff} = 5.3 +/- 1.3 (68% CL)
- $\Delta N_{eff} = (0.02 2.2) (68\% CL)$
- No evidence of $\Delta N_{eff} > 0$

BBN

- $N_{eff} = 3.68 + 0.80 0.70$ (68 % CL)
- But $\triangle N_{eff} < 1 (95\% CL)$

- WMAP-7
- Barion Acoustic OscillationsHubble constant
- E. Komatsu et al arXiv: 1001.4538 [astro-ph.CO]
- WMAP-7 - Atacama Cosmology Telescope arXiv:1009.0866 [astro-ph.CO]

J. Hamann et al PRL 105 (2010)181301

A X Gonzalez-Morales, et al 1106.5052 [astro-ph. CO]

Y. I. Izotov and T X Thuan Astrophys J 710 (2010) L67

G. Mangano , P. D. Serpico, 1103.1261