Absolute Scale of the Neutrino Mass and the Search for Neutrinoless Double Beta Decay

Ecole Internationale Daniel Chalonge

15th Paris Cosmology Colloquium 2011, Paris, July 20-22, 2011

Christian Weinheimer

Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Germany weinheimer@uni-muenster.de

Introduction Search for neutrinoless double beta decay Direct neutrino mass search Some remarks on sterile neutrinos

Conclusions

Photo: M. Zacher

Neutrino (vacuum) oscillations

Incredients:

33

Positive results from ν oscillation experiments

atmospheric neutrinos (Kamiokande, Super-Kamiokande, ...)

accelerator neutrinos (K2K, T2K, MINOS, OPERA, MiniBoone)

solar neutrinos

(Homestake, Gallex, Sage, Super-Kamiokande SNO, Borexino) Matter effects (MSW)

reactor neutrinos (KamLAND, CHOOZ, ...)

with: $sin^2(2\theta_{13}) < 0.15 (90\% CL) \neq 0$? $sin^2(2\theta_{12}) = 0.87 \pm 0.03$ large ! $sin^2(2\theta_{23}) > 0.92 (99.7\% CL) max !$ 7.39 10⁻⁵ eV² < Δm_{12}^{-2} < 7.79 10⁻⁵ eV² 2.30 $10^{-3} \text{ eV}^2 < |\Delta m_{23}^2| < 2.56 \ 10^{-3} \text{ eV}^2$ \Rightarrow m(v_i) \neq 0, but unknown ! up to now: description by 2-flavour oscillation sufficient

 $\begin{pmatrix} \boldsymbol{\nu_e} \\ \boldsymbol{\nu_{\mu}} \\ \boldsymbol{\nu_{\tau}} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \cdot \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$

 \Rightarrow non-trivial v-mixing

Need for the absolute v mass determination

Three complementary ways to the absolute neutrino mass scale

1) Cosmology

very sensitive, but model dependent compares power at different scales current sensitivity: $\Sigma m(v_i) \approx 0.5 \text{ eV}$ e.g. S. Hannestad, Prog.Part.Nucl.Phys.65 (2010) 185

2) Search for \mathbf{0}\nu\beta\beta

Sensitive to Majorana neutrinos Evidence for $m_{ee}(v) \approx 0.4 \text{ eV}$? GERDA commissioned !

3) Direct neutrino mass determination:

No further assumptions needed. no model dependence \overline{P} use E² = p²c² + m²c⁴ \Rightarrow m²(v) is observable mostly most sensitive methode: endpoint spectrum of β -decay

Double β decay

Current and future double β decay experiments

Christian Weinheimer 15th Paris Cosmology Colloquium July 2011 7

Searching for $0\nu\beta\beta$: NEMO3 \rightarrow SuperNEMO

NEMO3: tracking calorimeter with several isotopes (finished Jan 2011)

SuperNEMO: tracking calorimeter modules enriched ⁸²Se, ¹⁵⁰Nd

¹⁰⁰Mo: $T_{1/2} (0\nu\beta\beta) > 1.1 \times 10^{24} y$ $\Rightarrow m_{ee} < (0.45 - 0.93) eV$ F Mauger, TAUP09

expect sensitivity: $T_{1/2} (0\nu\beta\beta) > 10^{26}$

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

Searching for $0\nu\beta\beta$: TeO₂ cryobolometers: **CUORICINO** → **CUORE**

Christian Weinheimer

9

The GERDA experiment

New background reduction methods:

- naked Germanium detectors in noble liquid
- phase 2: point contact detectors p-type (BEGe) to identify multi-side events
- maybe use scintillation of LAr shield as veto

Phases of GERDA:

Phase 1: reuse old det. (Hd-Moscow, IGEX (18 kg)

1st test string with 3 non-enriched detectors problem ${}^{42}Ar \rightarrow {}^{42}K \rightarrow {}^{42}Ca$, seems to be solved

since June 2011: test string with 3 enriched det. all enriched detectors will come after summer

Phase 2: new enriched BEGe detectors (+18 kg) delivery in 2012 expected

Opt. phase: many detectors (with MAJORANA, 500 kg)

GERDA inauguration

© Jan Hattenbach

Inauguration of the GERDA experiment at the LNGS 9. November 2010 n '10: Commissioning of

Nov/Dec.'09: Liquid argon

 Apr/Mai '10: emergency drainage tests of water tank
 Apr/Mai '10: Installation clock

May '10: 1st deployment of FE&detector mock-up (27 pF) - pulser resolution 1.4 keV (FWHM); first deployment of non-enriched detector

• June '10: Start of commissioning run with ^{nat}Ge detector string

 Soon: start of Phase I physics data taking

Summary of GERDA commissioning runs with non-enriched detectors

background indices for different operational conditions

Run History

(derived in $Q_{BB} \pm 200 \text{ keV}$)

Christian Weinheimer 15th Paris Cosmology Colloquium July 2011 12

Under Commissioning: EXO 200: 200 kg enriched ¹³⁶Xe at WIPP/New Mexico

WESTFÄLISCHE WILHELMS-UNIVERSITÄT Münster

Under Commissioning: EXO 200

Futher experiments under R&D and commissioning: Majorana, KamLAND-Zen, Lucifer, SNO+, Cobra

100

80

60

40

20

0

-20

-40

Direct determination of $m(v_{a})$

from β decay

$$\beta$$
 decay: (A,Z) \rightarrow (A,Z+1)⁺ + e^- + $\overline{\nu}$

 β electron energy spectrum:

 $m^{2}(v_{e}) = \sum |U_{ei}^{2}| m^{2}(v_{i})$ (incoherent)

 $dN/dE = K F(E,Z) p E_{tot} (E_0-E_e) \Sigma |U_{ei}|^2 \sqrt{(E_0-E_e)^2 - m(v_i)^2}$

(modified by electronic final states, recoil corrections, radiative corrections)

 Need:
 low endpoint energy very high energy resolution & very high luminosity & very high luminosity & A
 ⇒
 Tritium ³H, (¹⁸⁷Re)

 ✓
 ✓
 MAC-E-Filter (or bolometer for ¹⁸⁷Re)

Cryogenic bolometers with ¹⁸⁷Re MIBETA (Milano/Como)

MANU (Genova)

- Re metalic crystal (1.5 mg)
- BEFS observed (F.Gatti et al., Nature 397 (1999) 137)
- sensitivity: m(v) < 26 eV (F.Gatti, Nucl. Phys. B91 (2001) 293)

Christian Weinheimer 15th Paris Cosmology Colloquium July 2011 16

MARE (Microcalorimeter Arrays for a Rhenium Exp.)

Genova, Goddard Space Fligth Center/NASA, Heidelberg, Como, Milano, Trento, U Wisconson

Tritium experiments: source \neq **spectrometer MAC-E-Filter** WILHELMS-UNIVERSITÄT

Vestfälische

MÜNSTER

18

Molecular Windowless Gaseous Tritium Source WGTS

The windowless gaseous tritium source under construction

- WGTS demonstrator delivered in spring 2010 successfully tested
- after successful testing the demonstrator will be completed (mainly with magnets) to become the final WGTS

Transport and differential & cryo pumping sections

 \Rightarrow adiabatic electron guiding & T₂ reduction factor of ~10¹⁴

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

time [h]

Commissioning of DPS2-F

Christian Weinheimer 15th Paris Cosmology Colloquium July 2011 23

Pre and main spectrometer

Main spectrometer:

/estfälische

Münster

WILHELMS-UNIVERSITÄT

- ⊘10m, length 24m
 - \Rightarrow large energy resolution: $\Delta E = 0.93 \text{ eV}$
 - \Rightarrow high luminosity: L = A_{Seff} $\Delta\Omega/4\pi$ = A_{analyse} $\Delta E/(2E)$ = 20 cm²
- ultrahigh vacuum requirements (background) $p < 10^{-11}$ mbar (EHV)
- "simple" construction: vacuum vessel at HV + "massless" screening electrode

Pre spectrometer

- Transmission of electron with highest energy only
 - (10⁻⁷ part in last 100 eV)
 - \Rightarrow Reduction of scattering probaility in main spectrometer
 - ⇒ Reduction of background
- only moderate energy resolution required: $\Delta E = 80 \text{ eV}$
- test of new ideas (EHV, shape of electrodes, avoid and remove of trapped particles, ...)

Electromagnetic design: magnetic fields

	Westfälische Wilhelms-Universität
	INUNSIEN

The detector

Requirements

- detection of β -electrons (mHz to kHz)
- high efficiency (> 90%)
- low background (< 1 mHz) (passive and active shielding)
- good energy resolution (< 1 keV)

Properties

- 90 mm Ø Si PIN diode
- thin entry window (50nm)
- detector magnet 3 6 T
- post acceleration (30kV) (to lower background in signal region)
- segmented wafer (145 pixels)
 - → record azimuthal and radial profile of the flux tube
 - \rightarrow investigate systematic effects
 - \rightarrow compensate field inhomogeneities

KATRIN detector

Detector at Seattle (arrival at KIT: July 11)

0.5 0.4 0.3 0.2 0.1 10

Global Background Rate Spectrum (10-30keV)

Main Spectrometer – Transport to Forschungszentrum Karlsruhe

Background reduction: shielding by "massless" wire electrode

Double-wire layer electrode (690m²) production and quality assurance

Electrode modules are being installed at the main spectrometer

Two-layer wire electrode system installation inside main spectrometer

Status of electrode installation as of July 2011

All electrodes installed 224/248) except modules in front of pump ports, scaffold removed.

Now installing NEG pumps and last electrodes

Foto: M. Zacher

KATRIN's sensitivity

Expectation for 3 full data taking years: $\sigma_{\rm syst}$ ~ $\sigma_{\rm stat}$

Sensitivity is still statistically limited,

because with more statistics would go closer to the endpoint, where most systematics nearly vanish

Sensitivity still has to proven, but there might be even some more improvements

KATRIN's sensitivity

Sensitivity still has to proven, but there might be even some more improvements

Complementarity of single and double β decay

Direct kinematic measurement: Neutrinolesss double β decay:

 $m^{2}(v_{e}) = \Sigma |U_{ei}^{2}| m^{2}(v_{i}) \qquad \text{(incoherent)}$ $m_{\beta\beta}(v) = |\Sigma |U_{ei}^{2}| e^{i\alpha(i)} m(v_{i})| \qquad \text{(coherent)}$

 $m(v_e)$ and $m_{ee}(v)$ could differ because of:

- Dirac neutrinos (no $0\nu\beta\beta$)
- Non-trivial CP-phases
- Uncertainties of the nuclear matrix elements
- Other processes (right-handed currents, Susy-particles, ...)

$$T = \underbrace{M_m < m_\nu >}_M_\theta < tg\vartheta > + M_{WR} < \left(\frac{M_1}{M_2}\right)^2 > \\ + M_{SUSY}\lambda_{111}^{\prime 2} + M_{VR} < \frac{m_p}{M_{VR}} >$$

A. Fäßler at "Massive Neutrinos", Bad Honnef, July 2006

 \Rightarrow different neutrino masses from single and double β decay could give a unique handle on the CP phases or the Dirac/Majorana character of neutrinos

Comparison of the different approaches to the neutrino mass

 $m^{2}(v_{e}) = \Sigma |U_{ei}^{2}| m^{2}(v_{i})$

Neutrinolesss double β decay:

Direct kinematic measurement:

$$m_{\beta\beta}(v) = |\Sigma| |U_{ei}^2| e^{i\alpha(i)} m(v_i)|$$

(incoherent) (coherent)

if no other particle is exchanged (e.g. R-violating SUSY) problems with uncertainty of nuclear matrix elements

 \Rightarrow absolute scale/cosmological relevant neutrino mass in the lab by single β decay

Remarks on sensitivity to sterile neutrinos WILHELMS-UNIVERSITÄT

VESTFÄLISCHE

Sterile neutrinos: cryobolometer versus electron spectrometer (MAC-E-Filter)

Electron spectrometer: source \neq detector

measure all energy, except that of the neutrino

→ could in principle measure large part of the beta spectrum without large systematics

\rightarrow large neutrino masses (up to keV) accessable

measure electron energy,

- which energy losses by scattering electronic excitations during decay (FS) for larger intervals below endpoint ,..
- → concentrate on endpoint region, otherwise systematic uncertainties too large

\rightarrow only medium neutrino masses

(up to a few 10 eV) accessable

Christian Weinheimer 15th Paris Cosmology Colloquium July 2011 38

The Mainz Neutrino Mass Experiment Phase 2: 1997-2001

After all critical systematics measured by own experiment (inelastic scattering, self-charging, neighbor excitation):

 $m^{2}(v) = -0.6 \pm 2.2 \pm 2.1 \text{ eV}^{2} \Rightarrow m(v) < 2.3 \text{ eV}$ (95% C.L.)

C. Kraus et al., Eur. Phys. J. C 40 (2005) 447 E.W. Otten & C. Weinheimer, Rep. Prog. Phys. 71 (2008) 086201

Statistical and systematic uncertainties of the Mainz 1998-2001 data

C. Kraus et al., Eur. Phys. J. C 40 (2005) 447

Sensivity on sterile neutrinos of previous direct neutrino mass experiments

A. Nucciotti, Meudon Workshop 2011, 8-10 JUNE 2011

Sensivity on sterile neutrinos of WESTFÄLISCHE WILHELMS-UNIVERSITÄTUP-coming direct neutrino mass experiments

A. Sejersen Riis, S. Hannestad, JCAP02 (2011) 011

A. Nucciotti, Meudon Workshop, June 2011

3 complementary probes of the neutrino mass:

cosmology: very sensitve, but some model-dependence

 $0v\beta\beta$: very sensitive to Majorana neutrino masses

many experiments under way, GERDA under commissioning direct neutrino mass determination (MARE, KATRIN):

no other assumptions, kinematics of β -decay at endpoint

KATRIN: 0.2 eV sensitivity:

2009-11 commissioning of main spectrometer and detector
2009-12 commissioning of tritium source and tritium elimination lines
2013- regular data taking for 5-6 years (3 full-beam-years)

Sterile neutrinos:

Direct neutrino mass search non neutrinoless double beta decay: cryobolometer: for heavy masses (cosmology) electron spectrometers for light masses (reactor neutrino anomaly, MiniBooNE)

Many thanks for providing important informations to

E. Fiorini, J. Formaggio, G. Gratta, A. Giuliani, S. Schönert, K. Zuber, ...

Christian Weinheimer 15th Paris Cosmology Colloquium July 2011 43