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Neutrino (vacuum) oscillations

Incredients: 1)  non-trivial ν mixing (matrix U, compare VCKM) between
     flavor states (νe νµ

 ν
τ
) and mass states (ν1, ν2, ν3

): 

 2)  m(νi) differ    at least one m(νi)
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propagation as coherent 
superposition of mass states

creation of a ν
α

via weak 
interaction

detection of a ν
β

via weak interaction

Double (triple) slit experiment
Double (triple) slit experiment

.Formula is correct, 
but correct derivation

needs QFT
(Guinti, Lindner et al.) 

with matter: Smirnov et al
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atmospheric neutrinos 
(Kamiokande,
Super-Kamiokande, ...)

accelerator neutrinos
(K2K, T2K, MINOS, 
OPERA, MiniBoone) 

solar neutrinos 
(Homestake, Gallex, 
Sage, Super-Kamiokande, 
SNO, Borexino)

reactor neutrinos 
(KamLAND, CHOOZ, ...)

                        non-trivial ν-mixing

                                

                                

                 with:

     sin2(2θ13)  <  0.15 (90% CL)        0 ?

  sin2(2θ12)  =  0.87   0.03       large !

  sin2(2θ23)  >  0.92 (99.7% CL)   max !
7.39 10-5 eV2   <   Δm12

2        < 7.79 10-5 eV2        
2.30 10-3 eV2   <  | Δm23

2 |   < 2.56 10-3 eV2

        m(νj)  0,   but unknown !
up to now: description by 
2-flavour oscillation sufficient

Positive results from 
ν oscillation experiments

Matter effects (MSW)
Matter effects (MSW)
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νe  νµ
  ν

τ

ν1 ν2 ν3

?
Results of recent oscillation experiments:  Θ23, Θ12, Δm2

23, Δm2
12
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12

hierarchical masses
e.g. seesaw mechanism type 1
explains smallness of masses, 
but not large (maximal) mixing

degenerated masses
cosmological relevant

e.g. seesaw mechanism type 2

relic neutrinos:
336 ν / cm3  

Need for the absolute 
ν mass determination
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1)  Cosmology
very sensitive, but model dependent
compares power at different scales
current sensitivity: Σm(νi)  0.5 eV

e.g. S. Hannestad, Prog.Part.Nucl.Phys.65 (2010) 185

2) Search for 0νββ  
Sensitive to Majorana neutrinos 
Evidence for mee(ν)   0.4 eV ?

   GERDA commissioned !

3) Direct neutrino mass determination:
   No further assumptions needed. no model dependence

 use E2 = p2c2 + m2c4    m2(ν) is observable mostly
 most sensitive methode: endpoint spectrum of β-decay 

   

Three complementary ways to the
absolute neutrino mass scale
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Double β decay

normal (2νββ)                    neutrinoless (0νββ)

needed: a)  ν  ν  (Majorana)           
b)  helicity flip: m(ν)  0

             or other new physics

Heidelberg Moscow
(enriched 76Ge)

Z-1    Z   Z+1

β

β

β

β

E

m
ββ

(ν)  = | Σ |Uei
2| eiα(i) m(νi)|   (coherent)
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β

β

detector

source

detector

β

β

source
=

detector

Current and future 
double β decay experiments

2 ways to measure both β-electrons: 
   semiconductor,             
cryogenic bolometer
   liquid scintillator

running: GERDA
setting up: CUORE, EXO-200, SNO+
planned: Majorana, KamLAND-Zen, COBRA,

Luzifer

just finished (Jan 11): NEMO-3
setting up: SuperNEMO
planned: MOON

mee  (1/enrichment)1/2  (ΔE   bg/M  t)1/4

  mass → 1t,  high enrichment,  very low background bg

tracking calorimeter
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NEMO3: tracking calorimeter 
with several isotopes 

(finished Jan 2011)

F Mauger, TAUP09

Searching for 0νββ: 
NEMO3 → SuperNEMO

100Mo: T1/2 (0νββ) > 1.1 × 1024 y 
  mee < (0.45 – 0.93) eV

SuperNEMO: 
tracking calorimeter modules

 enriched 82Se, 150Nd

expect sensitivity: T1/2 (0νββ) > 1026
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130Te: T1/2 > 3  1024 y
  mee < 0.19 – 0.68 eV

CUORICINO:

PRC 78 (2008) 35502

Searching for 0νββ: TeO2 cryobolometers:
CUORICINO → CUORE

starting:
CUORE: 741 kg TeO2

CUORE-0 will start in 2011
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stainless steel
cryostat

inner 
copper
shield

liquid argon

enriched 76Ge 
detector array

The GERDA experiment

New background reduction methods:
- naked Germanium detectors in noble liquid
- phase 2: point contact detectors p-type (BEGe) 

to identify multi-side events
- maybe use scintillation of LAr shield as veto

Phases of GERDA:
Phase 1: reuse old det. (Hd-Moscow, IGEX (18 kg)

    1st test string with 3 non-enriched detectors
problem 42Ar → 42K → 42Ca, seems to be solved
since June 2011: test string with 3 enriched det.
all enriched detectors will come after summer

Phase 2: new enriched BEGe detectors (+18 kg)
delivery in 2012 expected

Opt. phase: many detectors (with MAJORANA, 500 kg) 
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© Jan Hattenbach
• Nov/Dec.’09: Liquid argon 
fill
• Jan ’10: Commissioning of 
cryogenic system
• Apr/Mai ’10: emergency 
drainage tests of water tank 
• Apr/Mai ’10: Installation c-
lock
• May ’10: 1st deployment of 
FE&detector mock-up (27 
pF) - pulser resolution 1.4 
keV (FWHM); first 
deployment of non-enriched 
detector
• June ‘10: Start of 
commissioning run with natGe 
detector string 
• Soon: start of Phase I 
physics data taking 

Inauguration of the 
GERDA experiment 

at the LNGS
9. November 2010

GERDA inauguration
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background indices for different operational conditions 
(derived in Qββ±200 keV)

w/o mini-shroud with mini-shroud

encapsulation

“E-field free”

“cosmogenic 
detector”

w/o 
mini-shroud

R1

R2

R3

R4

R5

R6

R7

R8
R9

R10
R11 R12

Summary of GERDA commissioning runs 
with non-enriched detectors
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Under Commissioning: EXO 200:
200 kg enriched 136Xe at WIPP/New Mexico
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Under Commissioning: EXO 200

Futher experiments under R&D and commissioning:
Majorana, KamLAND-Zen, Lucifer, SNO+, Cobra



  

15th Paris Cosmology Colloquium July 2011 15Christian Weinheimer

averaged 
neutrino

mass

  Need: low endpoint energy  Tritium 3H, (187Re)
very high energy resolution &

   very high luminosity &  MAC-E-Filter          
very low background                 (or bolometer for 187Re)

Direct determination of m(νe) 
from β decay

 

β decay: (A,Z)   (A,Z+1)+  +  e-  + νe

 

E.W. Otten & C. Weinheimer 

Rep. Prog. Phys. 

71 (2008) 086201
E.W. Otten & C. Weinheimer 

Rep. Prog. Phys. 

71 (2008) 086201

β electron energy spectrum:

dN/dE = K  F(E,Z)  p  Etot  (E0-Ee)  Σ |Uei|2  (E0-Ee)2 – m(νi)2 
(modified by electronic final states, recoil corrections, radiative corrections)

m2(νe)  =   Σ |Uei
2| m2(νi)

(incoherent)
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Parameters

detectors: 10 (AgReO4)

rate each: 0.13 1/s
energy res.: ΔE = 28 eV
pile-up frac.: 1.7 10-4

Mν   15.6 eV (90% c.l.)

Mν
2 = -141  211 stat  90 sys eV2 

(M. Sisti et al., NIMA520 (2004) 125)

MANU (Genova)
- Re metalic crystal (1.5 mg)
- BEFS observed (F.Gatti et al., Nature 397 (1999) 137) 
- sensitivity:  m(ν) < 26 eV (F.Gatti, Nucl. Phys. B91 (2001) 293)

Cryogenic bolometers with 187Re
MIBETA (Milano/Como)
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MARE (Microcalorimeter Arrays for a Rhenium Exp.)

Genova, Goddard Space Fligth Center/NASA, Heidelberg, 
Como, Milano, Trento, U Wisconson 

MARE I:
300 detectors (MIBETA: 10) 
ΔE = 10 eV (MIBETA: 28 eV) 
τ = 10-4 s (MIBETA: 10-3 s) 
with semiconductor sensors (like MIBETA/MANU)
expected sensitivity on m(νe): 2-3 eV 

MARE II: sensitivity of 0.2 eV with 90% C.L. with about 
630000 detector years assuming an activity of 5 Bq per pixel.
A. Nucciotti et al., Astroparticle Physics vol. 34 2, (2010) 80
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Tritium experiments: source  spectrometer
MAC-E-Filter

    Magnetic Adiabatic Collimation + Electrostatic Filter
(A. Picard et al., Nucl. Instr. Meth. 63 (1992) 345)

● Two supercond. solenoids
compose magnetic
guiding field

● adiabatic transformation:
    µ = E

 

/B = const.
 parallel e- beam

● Energy analysis by
electrostat. retarding field
ΔE = E

=

Bmin/Bmax 
= 0.93 eV (KATRIN)

   sharp integrating transmission function without tails 
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  70 m 

windowless gaseous

molecular tritium source

tritium
retention
system

pre
spectro-

meter

main spectrometer detector

The KATRIN experiment
at KIT

● very high energy resolution 
  (ΔE  1eV, i.e. σ = 0.3 eV)   source   spectrometer concept

● strong, opaque source   dN/dt ~ Asource 

● magnetic flux conservation (Liouville)   scaling law:
Aspectrometer  / Asource =   Bsource / Bspectrometer = E / ΔE = 20000 / 1

KATRIN Design Report

Scientific Report FZKA 7090)

Aim: m(νe) sensitivity of 200 meV (currently 2 eV) 

10m
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WGTS: tub in long superconducting solenoids
 9cm, length: 10m, T = 30 K

Tritium recirculation (and purification)
pinj = 0.003 mbar, qinj = 4.7Ci/s

allows to measure with near to 
maximum count rate using 

ρd = 5  1017/cm2

with small systematics

check column density by e-gun, T2 purity by laser Raman

T2

Molecular Windowless Gaseous 
Tritium Source WGTS
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The windowless gaseous tritium 
source under construction

WGTS tube / inner 
shield  assembly 

Leak test  
WGTS 

tube 

● WGTS demonstrator 
delivered in spring 2010
successfully tested

● after successful testing
the demonstrator will be
completed (mainly with
magnets) to become the 
final WGTS

April 2010: arrival of 
„demonstrator“ at KIT
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Transport and differential 
& cryo pumping sections

Molecular windowless
gaseous tritium source

< 2.5 10-14 mbar l/s

T2-injection 1.8 mbar l/s (STP)
= 1.7*1011 Bq/s =  40 g/d

Differential
pumping

 10-7 mbar l/s

   adiabatic electron guiding & T2 reduction factor of ~1014   

Cryogenic
pumping

with Argon snow
at LHe temperatures

(successfully tested with the 
TRAP experiment)

FT-ICR Penning traps to

measure ions from WGTSFT-ICR Penning traps to

measure ions from WGTS
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DPS field 
stability
300 hours @ 
185 A

decay 1.5 x 
10-5

in 3 months

time [h]

B
-fi

el
d 

[T
]

gas inlet
≈ 3×1017

molecules/s

outgoing
gas flow
≈ 3×1012

molecules/s
First gas 

flow reduction
measurements

with Ar
(preliminary)

Commissioning of DPS2-F

FT-ICR Penning traps:

M. Ubieto-Diaz et al., 

Int. J. Mass. Spectrom. 

288 (2009) 1-5

FT-ICR Penning traps:

M. Ubieto-Diaz et al., 

Int. J. Mass. Spectrom. 

288 (2009) 1-5

Ion test source:

S. Lukic et al., 

Rev. Scient. Instr. 

82 (2011) 013303

Ion test source:

S. Lukic et al., 

Rev. Scient. Instr. 

82 (2011) 013303
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10 10 e -/s
10 3 e -/s

10 -2 - 10 2 e -/s

Pre and main spectrometer

Main spectrometer:
● 10m, length 24m

 large energy resolution: ΔE = 0.93 eV
 high luminosity: L = ASeff  ΔΩ/4π = Aanalyse ΔE/(2E) = 20 cm2

● ultrahigh vacuum requirements (background) p < 10-11  mbar (EHV)
● „simple“ construction: vacuum vessel at HV + „massless“ screening electrode

Pre spectrometer
● Transmission of electron with highest energy only 

(10-7 part in last 100 eV)
 Reduction of scattering probaility in main spectrometer
 Reduction of background

● only moderate energy resolution required: ΔE = 80 eV

● test of new ideas (EHV, shape of electrodes, avoid and remove of trapped particles, ...)
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-40                   -30                   -20                   -10                      0                   +10
distance from analysing plane [m]

B-field [ T]

1:20000

Electromagnetic design: 
magnetic fields

  ΔE = E  Bmin / Bmax 
   = E   1 / 20000
   = 0.93 eV

aircoils:
axial field shaping 
+ earth field compensation
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PINCH 
MAGNET DETECTOR 

MAGNET

DETECTOR

SUPPORT 
STRUCTURE

VACUUM, CALIBRATION SYSTEM

ELECTRONICS

elec
tro

ns  
  

The detector

Requirements
● detection of β-electrons (mHz to kHz)
● high efficiency (> 90%)
● low background (< 1 mHz) 

(passive and active shielding)
● good energy resolution (< 1 keV)

 

Properties
● 90 mm Ø Si PIN diode
● thin entry window (50nm)
● detector magnet 3 - 6 T
● post acceleration (30kV)

(to lower background in signal region)
● segmented wafer (145 pixels)

 

→ record azimuthal and radial profile of
     the flux tube
→ investigate systematic effects
→ compensate field inhomogeneities
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 KATRIN detector

Detector at Seattle (arrival at KIT: July 11)
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Main Spectrometer – Transport
to Forschungszentrum Karlsruhe

Leopoldshafen, 25.11.06

8800 km

Tritium Laboratory KarlsruheTritium Laboratory Karlsruhe
spectrometerspectrometer

  hallhall

main spectrometermain spectrometer
supportsupport

buildingsbuildings
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Secondary electrons from wall/electrode

by cosmic rays, environmental radioactivity, ...

wire electrode on slightly more negative potential

Mainz V (2004)
New record !April 04

KATRIN pre spectrometer

First realisation:
     Mainz III

Background reduction: shielding
by „massless“ wire electrode









e-

U-ΔU    U

µ

γ
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Double-wire layer electrode (690m2) 
production and quality assurance

C-sh
aped ro

d

comb 1. wire layer
Ø = 0.3 mm

2. wire layer 
Ø = 0.2 mm

70
 m

m 25 mm

@ Münster University@ Münster University

3-dim coordinate
measurement setup

in Münster clean-room

1,8
0 m

2-dim laser sensorhighres camera

Electrode 

production 

finished

in Oct. 2009

Electrode 

production 

finished

in Oct. 2009
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Two-layer wire electrode system installation inside main spectrometer

Will be finished
in August. 2011 74 modules at source side 

Electrode modules are being installed 
at the main spectrometer
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Status of electrode installation
as of July 2011

All electrodes installed
224/248) except modules
in front of pump ports,
scaffold removed.

Now installing NEG pumps
and last electrodes

Foto: M. Zacher
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KATRIN

Mainz

□ m = 0.5 eV
○ m = 0.35 eV
● m = 0 eV

KATRIN´s sensitivity

Example of KATRIN simulation & fit
(last 25eV below endpoint, reference):

sensitivity:
mν < 0.2eV (90%CL)

discovery potential:
mν  =  0.3eV     (3σ)
mν  =  0.35eV   (5σ)

Expectation for 3 full data taking years: σsyst ~ σstat

Sensitivity is still statistically limited, 
because with more statistics would go closer to the endpoint, 
where most systematics nearly vanish

Sensitivity still has to proven, but there might be even some more improvements
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KATRIN

Mainz

□ m = 0.5 eV
○ m = 0.35 eV
● m = 0 eV

KATRIN´s sensitivity

Example of KATRIN simulation & fit
(last 25eV below endpoint, reference):

sensitivity:
mν < 0.2eV (90%CL)

discovery potential:
mν  =  0.3eV     (3σ)
mν  =  0.35eV   (5σ)

Expectation for 3 full data taking years: σsyst ~ σstat

Sensitivity is still statistically limited, 
because with more statistics would go closer to the endpoint, 
where most systematics nearly vanish

Sensitivity still has to proven, but there might be even some more improvements

  KATRIN will improve the sensitivity by 1 order of magnitude

will check the whole cosmological relevant mass range

will detect degenerate neutrinos (if they are degen.)
  KATRIN will improve the sensitivity by 1 order of magnitude

will check the whole cosmological relevant mass range

will detect degenerate neutrinos (if they are degen.)
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Complementarity of
single and double β decay

    different neutrino masses from single and double β decay could give a 
unique handle on the CP phases or the Dirac/Majorana character of neutrinos

Direct kinematic measurement: m2(νe)  =   Σ |Uei
2| m2(νi) (incoherent)

Neutrinolesss double β decay: m
ββ

(ν)  = | Σ |Uei
2| eiα(i) m(νi)|   (coherent)

m(νe) and mee(ν) could differ because of:
●  Dirac neutrinos (no 0νββ)
●  Non-trivial CP-phases 
●  Uncertainties of the nuclear matrix elements
●  Other processes (right-handed currents, Susy-particles, ...)

  A. Fäßler at “Massive Neutrinos”, Bad Honnef, July 2006  
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  m
(ν

e) 
  m

ββ
   

[e
V

]  

Comparison of the different 
approaches to the neutrino mass

    absolute scale/cosmological relevant neutrino mass in the lab by single β decay  

Direct kinematic measurement: m2(νe)  =   Σ |Uei
2| m2(νi) (incoherent)

Neutrinolesss double β decay: m
ββ

(ν)  = | Σ |Uei
2| eiα(i) m(νi)|   (coherent)

if no other particle is exchanged (e.g. R-violating SUSY)
problems with uncertainty of nuclear matrix elements

  m
(ν

e) 
  m

ββ
   

[e
V

]  

uncertainty due
to unknowns

of the neutrino
mixing, essentially

the Majorana-phases
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Remarks on sensitivity to sterile neutrinos 

Neutrinolesss double β decay: m
ββ

(ν)  = |   Σ    |Uei
2| eiα(i) m(νi)|   (coherent)

      measures only „one number“ → cannot distinguish sterile neutrinos if Uei is small

Direct kinematic measurement: m2(νe)  =   Σ     |Uei
2| m2(νi) (incoherent)

     measure spectrum → can distinguish different mass states (also sterile)
if m(νi) and Uei are large   

na+ns

i=1

na+ns

i=1
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Cryobolometer: source = detector                 Electron spectrometer: source  detector

measure all energy, except that of the neutrino

→ could in principle measure large part 
of the beta spectrum
without large systematics

→ large neutrino masses (up to keV) 
accessable

measure electron energy, 
which energy losses by scattering
electronic excitations during decay (FS)
for larger intervals below endpoint ,..

→ concentrate on endpoint region, 
otherwise systematic uncertainties too large

→ only medium neutrino masses 
(up to a few 10 eV) accessable

Sterile neutrinos: cryobolometer versus
 electron spectrometer (MAC-E-Filter) 
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The Mainz Neutrino Mass Experiment 
Phase 2: 1997-2001

After all critical systematics measured by own experiment
(inelastic scattering, self-charging, neighbor excitation):

m2(ν) = -0.6 ± 2.2 ± 2.1 eV2   m(ν)< 2.3 eV  (95% C.L.)

C. Kraus et al., Eur. Phys. J. C 40 (2005) 447
E.W. Otten & C. Weinheimer, Rep. Prog. Phys. 71 (2008) 086201

⇓
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Statistical and systematic uncertainties
of the Mainz 1998-2001 data

   
   

   
   

   
   
Δ

m
ν2   

[e
V

2 ]
C. Kraus et al., Eur. Phys. J. C 40 (2005) 447
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Sensivity on sterile neutrinos of 
previous direct neutrino mass experiments

95% C.L. upper limit 
from Mainz phase 2 data
H. Singer et al 
(shown at the 372. WE-Heraeus seminar: 
Massive Neutrinos, Bad Honnef, 2006
still unpublished) 



  

15th Paris Cosmology Colloquium July 2011 42Christian Weinheimer

A. Sejersen Riis, S. Hannestad, JCAP02 (2011) 011 A. Nucciotti, Meudon Workshop, June 2011

KATRIN            MARE II

Sensivity on sterile neutrinos of 
up-coming direct neutrino mass experiments
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Conclusions

3 complementary probes of the neutrino mass:
cosmology: very sensitve, but some model-dependence
0νββ: very sensitive to Majorana neutrino masses 

many experiments under way, GERDA under commissioning
direct neutrino mass determination (MARE, KATRIN): 

no other assumptions, kinematics of β-decay at endpoint

KATRIN: 0.2 eV sensitivity:
2009-11  commissioning of main spectrometer and detector  
2009-12  commissioning of tritium source and tritium elimination lines 
2013-   regular data taking for 5-6 years (3 full-beam-years) 

Sterile neutrinos: 
Direct neutrino mass search non neutrinoless double beta decay: 
cryobolometer: for heavy masses (cosmology)
electron spectrometers for light masses (reactor neutrino anomaly, MiniBooNE)

Many thanks for providing important informations to 
E. Fiorini, J. Formaggio, G. Gratta, A. Giuliani, S. Schönert, K. Zuber, ...    
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