

KATRIN

Ecole Internationale Daniel Chalonge 2013

July 26th, 2013

Guido Drexlin, KCETA

Outline

Introduction

- Scientific goals
- Tritium source
 - challenges: temperature stability
- Electrostatic spectrometer
 - challenges: radon-induced background

Conclusion

KATRIN experiment

Karlsruhe Tritium Neutrino Experiment

- next-generation direct v-mass experiment at KIT
- International Collaboration:
 15 institutions in 5 countries:

reference v-mass sensitivity:

120 members D, US, UK, CZ, RUS $m(v_e) = 200 \text{ meV}$

-

absolute v-mass scale

motivation: v's in astroparticle physics

motivation: searching for sterile neutrinos

cosmology: role of relic-v's as hot dark matter (Ω_v) **particle physics:** absolute neutrino mass scale (m_v)

idea: detect kinks in ß-decay spectrum when mass of sterile species is accessible kinematically in ß-decay (sub-eV to keV scale)

G. Drexlin, V. Hannen, S. Mertens, C. Weinheimer, Current Direct Neutrino Mass Experiments (Review) Advances In High Energy Physics (2013) 293986

KATRIN – benchmark parameters total background: 10⁻² cps tritium source: 10¹¹ ß-decays/s $(\equiv LHC particle production)$ $(\equiv low level @ 1 mwe)$ experimental challenges many benchmark parameters reached or exceeded ⓑ 10-3 stability of tritium source column density ₩ 10-3 isotope content in source ⓑ 10-5 non-adiabaticity in electron transport ₩ 10-6 monitoring of HV-fluctuations ₩ 10-8 remaining ions after source

♦ 10-14 remaining flux of molecular tritium

F. Glück, Prog. in Electromagnetics Research B, 32 (2011) 351-388 & 319-350

KATRIN – challenges and solutions

WGTS demonstrator

main spectrometer

Why is the gaseous tritium source so challenging when measuring $m(v_{e})$ and hunting for keV-mass v_{s} ?

superconducting magnet system for adiabatic guiding of ß-decay electrons

Tritium Laboratory Karlsruhe – TLK

tritium bearing components

- **TLK**: unique large research facility at KIT for KATRIN and fusion (ITER) 20 years of experience in tritium handling and processing, 24 g on-site

B. Bornschein et al., Fusion Sci. Techn. 60 (2011) 1088

Investigation of source systematics

 $\mathbf{\nabla}$

 $\mathbf{\nabla}$

 $\mathbf{\nabla}$

control of source systematics:

- near-time control/monitoring systems for key parameters
- successful large-scale test experiments (WGTS demonstrator)
- improved source modelling: quasi-3D gas flow

M. Babutzka et al., New Journal of Physics 14 (2012) 103046

Laser Raman (LARA) spectroscopy

WGTS – windowless gaseous source

WGTS demonstrator – BT stability at 30K

Technology highlight: successful proof-of-principle of novel WGTS beam tube cooling system
data: ΔT = 1.5 mK (1 σ) (1 h)
required: ΔT = 30 mK (1 σ) (1 h)
implications: significantly reduced systematic errors from source fluctuations Δpd/pd ~ ΔT/T = 5 · 10⁻⁵

S. Grohmann et al., The thermal behaviour of the tritium source in KATRIN, Cryogenics 55 (2013) 5

$\Delta \rho d/\rho d \sim \Delta T/T \sim 5 \cdot 10^{-5}$ per hour

 $\Delta \rho / \rho \sim \Delta T / T \sim 10^{-5}$

Karisruhe Institute of Technolog

Guido Drexlin, KCETA

www.kit.edu

Why is a single nuclear α -decay in the spectrometer so dangerous when measuring $m(v_e)$?

focal plane detector system

focal plane detector

segmented Si-PIN diode array:

- count transmitted electrons
- radial & azimuthal mapping
- arrival time of electron
- study of systematics
- s.c. magnets for guiding

spectrometer: signal & background

KASSIOPEIA: detailed simulation of electron trajectories

spectrometer: signal & background

radon induced background

²¹⁹Rn emanation from St707 NEG getter strips (3 · 1 km) in pump ports of spectrometers
²¹⁹Rn
²¹⁹Rn

radon induced background

radon induced background

pre-spectrometer – measurements

pre-spectrometer background investigations

 novel bg-source: ^{219,220}Rn produce electrons in the keV-range, which are trapped & generate enhanced bg-levels for up to several hours

pre-spectrometer - measurements

Kerisruhe Institute of Technology

Implications for main spectrometer

UHV pumping scenario

S. Mertens et al., Astropart. Phys. 41 (2013) 52

need novel background reduction techniques

LFCS low-field fine-tuning

EMCS earth field compensation

main spectrometer vessel

Ø = 12.7 m

2011: fully commissioned large Helmholtz coil system

measurement of magnetic inhomogeneities:

 $\Delta B/B < 2\%$

May 2010: first wire modules installed

January 2012: Inner electrode system (24.000 wires) completely mounted (precision: 200 µm!)

United States

Thursday

angen

May 8, 2012 14:11 spectrometer pump ports are closed

> 3x1000 m NEG strips (pump speed ~1.000.000 {/s)

Spectrometer commissioning

2013 first period of data-taking with entire spectrometer/detector

- successful bake-out of spectrometer vessel at 300°C
- NEG pump activated
- inner electrode system: no broken wire
- first light achieved May 31st
- extensive commissioning measurements started

commissioning measurements

Commissioning measurements

- study background characteristics
- study of optimisied electromagnetic layout
- first measurement of transmission curve with egun
- test active background removal methods

spectrometer pressure **p** ~ **5** • **10**⁻¹¹ **mbar** = pressure at lunar surface during day time

Background reduction techniques

Passive methods: pump out & cryotrap radon atoms

- minimise background generation mechanisms due to ionisation

Cryogenic Cu-Baffle **Excellent UHV** Radon pump-out - fast pump-out time for - cryotrap radon atoms - keep stable UHV with $p < 1 \cdot 10^{-11} \text{ mbar} (\sim 5 \text{ a})$ radon atoms onto LN2 cooled baffle non-getterable species getterable gas species cryotrap gas species

Background reduction techniques

Background reduction techniques

Active methods

- fast removal of stored electrons by breaking of trapping condition

KATRIN sensitivity

Conclusion

