

Ecole Internationale Daniel Chalonge 17th Paris Cosmology Colloquium 2013

"The new standard model of the Universe: Lambda Warm Dark Matter (LWDM) Theory vs. Observations"

1

Neutrino Masses, Mixings and Phases: Theory vs. Experiment

Gianluigi Fogli Dipartimento di Fisica & INFN - Bari

Gianluigi Fogli

Outline

- 1. The 3v Mass-Mixing Framework
- 2. Oscillation searches sensitive to Δm^2
- 3. Oscillation searches sensitive to δm^2
- 4. Global 3v analysis of all oscillation data
 - + 6 exercises as homework (since this is an "Ecole" ...)

Based on work with E. Lisi, A. Marrone, D. Montanino, A. Palazzo, A.M. Rotunno, ...

1. The 3v Mass-Mixing Framework

1. Neutrino hysto(ry)gram

The discovery of flavor oscillations has raised the level of interest in neutrino physics, at the level of ~ 1.4×10^3 papers/year titled "...neutrino(s)..." on SPIRES

- The fundamental v parameters: $(\Delta m^2, \theta_{23})$ $(\delta m^2, \theta_{12})$ [Osc.patterns]
- Basis of 3v mixing framework essentially established in 1998-2012

Gianluigi Fogli

Neutrino Masses, Mixings and Phases: Theory vs. Experiment, Paris, July 24th, 2013

 (θ_{13})

2. Notation for neutrino masses

- Three mass eigenstates $v_1 v_2 v_3$ with masses $m_1 m_2 m_3$
- For ultrarelativistic v in vacuum: $E = \sqrt{m_i^2 + p^2} \approx p + \frac{m_i^2}{2p}$
- Neutrino oscillations probe $\Delta E \approx \Delta m_{ii}^2$
- 3 neutrinos \rightarrow 2 independent mass differences, say, δm^2 and Δm^2
- Experimentally very different values: $\delta m^2 / \Delta m^2 \sim 1/30$

 $\delta m^2 = 7.5 \times 10^{-5} eV^2$ small or "solar" splitting $\Delta m^2 = 2.5 \times 10^{-3} eV^2$ large or "atmospheric" splitting

- Very difficult to probe both splittings in the same experiment!
- Absolute v mass scale unknown: lightest m_i could be zero
 - However, upper limits exist: $m_i \leq O(eV)$

Gianluigi Fogli

Two possible arrangements, called "hierarchies", for the splittings

- In both hierarchies, there is "doublet" of close mass states and a "lone" mass state. Universal convention: v_3 is the lone state, (v_1, v_2) is the doublet, with v_1 being the lightest state: $m_1 < m_2$.
- Splittings: $\delta m^2 = m_2^2 m_1^2 > 0$ (> 0 by definition) • We use $\Delta m^2 = m_3^2 - m_{1,2}^2 > \text{or } < 0$ (± an important physical sign) $\Delta m^2 = \frac{1}{2} \left[m_{3,1}^2 - m_{3,2}^2 \right]$ (our convention)

3. Notation for neutrino mixing

Three flavor states $v_e v_\mu v_\tau$ coming from mixing of the mass eigenstates $v_1 v_2 v_3$

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

i.e.
$$v_{\alpha} = U_{\alpha i} v_{i}$$

If these are the only v states in nature, then the matrix U is unitary

$$UU^{\dagger} = I$$

- For antineutrinos $U \rightarrow U^*$
- As for quarks, the unitary mixing matrix U can be expressed in terms of four independent physical parameters:

```
3 mixing angles + 1 SP phase
```

The Particle Data Group notation is universally adopted:

$$\begin{split} \mathsf{U} &= O_{23} \, \Gamma_{\delta} \, O_{13} \, \Gamma_{\delta}^{\,\dagger} \, O_{12} = \\ &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} = \\ &= \begin{pmatrix} c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i\delta} \\ -s_{12} c_{23} - c_{12} s_{23} s_{13} e^{i\delta} & c_{12} c_{23} - s_{12} s_{23} s_{13} e^{i\delta} & s_{23} c_{13} \\ s_{12} s_{23} - c_{12} c_{23} s_{13} e^{i\delta} & -c_{12} s_{23} - s_{12} c_{23} s_{13} e^{i\delta} & c_{23} c_{13} \end{pmatrix} \end{split}$$

 here
$$\Gamma_{\delta} = \begin{pmatrix} 1 \\ 1 \\ e^{i\delta} \end{pmatrix} \qquad \text{and} \qquad \begin{bmatrix} c_{ij} = \cos\theta_{ij} \\ s_{ij} = \sin\theta_{ij} \end{bmatrix}$$

The matrix U is often called "Pontecorvo-Maki-Nakagawa-Sakata" (PMNS) matrix.

Gianluigi Fogli

W

Experimentally we know that

- The presence of two small parameters, $\sin^2\theta_{13} \sim 0.02$ and $\delta m^2 / \Delta m^2 \sim 1/30$, makes 3_V mixing approximatively reducible to an "effective 2_V mixing" in several cases of phenomenological interest.
- Goal of many currents and future experiments is to find evidence of "genuine 3v effects" beyond the 2v approximation.

4. Neutrino flavor evolution

Since $m_i \ll E$ in almost all cases of phenomenological interest, then

- We can often set $\beta = v/c \approx 1$.
- Chirality flips (LH ↔ RH) of O(m_i/E) can be ignored, i.e. the spinorial properties are not relevant in flavor evolution.
- One can then adopt a simple description in terms of "scalar" states $|v\rangle$ governed by a Hamiltonian ${\cal H}$

$$i \frac{d}{dx} |v\rangle = \mathcal{H} |v\rangle$$

with formal solution

 $|v(x)\rangle = S(x,0) |v(0)\rangle$

where S(x,0) is the evolution operator from 0 to x.

Let us start from the evolution in vacuum

For a v beam of momentum p traveling in vacuum, in the mass eigenstates basis the $\mathcal H$ matrix reads:

$$\mathcal{H}_{\text{mass}} = \begin{pmatrix} \mathsf{E}_{1} \\ \mathsf{E}_{2} \\ \mathsf{E}_{3} \end{pmatrix} \simeq \mathsf{p} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + \frac{1}{2\mathsf{E}} \begin{pmatrix} \mathsf{m}_{1}^{2} \\ \mathsf{m}_{2}^{2} \\ \mathsf{m}_{3}^{2} \end{pmatrix} \qquad \text{diagonal}$$

However, in the flavor basis:

$$\mathcal{H}_{flavor}$$
 = U \mathcal{H}_{mass} U[†]

non diagonal: flavor not conserved

We shall work out several consequences of this simple Hamiltonian, and then add corrections for propagation in matter.

Main output: flavor oscillation probabilities

$$\mathsf{P}(\mathsf{v}_{\alpha} \rightarrow \mathsf{v}_{\beta}) = |S_{\beta\alpha}|^2$$

 $\alpha = \beta$: "survival" (or "disappearance") probability $\alpha \neq \beta$: "transition" (or "appearance") probability

Exercise # 1: 3v oscillation in vacuum

It can be proved that the general form of the "transition" probability is

$$P(v_{\alpha} \rightarrow v_{\beta}) = \delta_{\alpha\beta} - 4\sum_{i < j} \operatorname{Re} J_{\alpha\beta}^{ij} \sin^{2} \left(\frac{\Delta m_{ij}^{2} x}{4E} \right) - 2\sum_{i < j} \operatorname{Im} J_{\alpha\beta}^{ij} \sin \left(\frac{\Delta m_{ij}^{2} x}{2E} \right)$$

where

$$\Delta m_{ij}^{2} = m_{i}^{2} - m_{j}^{2} \qquad J_{\alpha\beta}^{\prime j} = U_{\alpha i} U_{\beta i}^{*} U_{\alpha j}^{*} U_{\beta j} \qquad i, j = 1, 2, 3$$

Numerically

$$\frac{\Delta m_{ij}^2 x}{4E} = 1.267 \left(\frac{\Delta m_{ij}^2}{eV^2}\right) \left(\frac{x}{m}\right) \left(\frac{MeV}{E}\right)$$

Exercise # 2: $3v \rightarrow 2v$ reduction for SBL reactor experiments

Short baseline reactor experiments look for \bar{v}_e oscillations at $E \sim O(1 \text{ km})$ E ~ few MeV

At these energies, CC reactions in the final state can produce e^+ but not μ^+ or τ^+ . Therefore, only "disappearance" $P(\bar{v}_e \rightarrow \bar{v}_e)$ is observable

but not

"appearance"

$$P(\bar{v}_{e} \rightarrow \bar{v}_{e}) \quad \text{is observe}$$

$$\begin{cases}
P(\bar{v}_{e} \rightarrow \bar{v}_{\mu}) \\
P(\bar{v}_{e} \rightarrow \bar{v}_{\tau})
\end{cases}$$

Moreover, it is $\delta m^2 L/4E \ll 1$, while $\Delta m^2 L/4E \sim O(1)$.

It can be proved that, in the limit $\delta m^2 \sim 0$, effective 2v oscillations occur:

$$P(\bar{v}_e \rightarrow \bar{v}_e) \simeq 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m^2 L}{4E}\right) \kappa$$

> oscillation factor (distance)

oscillation amplitude (mixing)

dependent only on θ_{13} .

We can get an intuitive understanding of the dependence on θ_{13} only.

Indeed, two of the three mixing rotations have ~ no effect

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

mixes unobservable mixes ~ degenerate flavors (µ and τ) mixes (v_{1} and v_{2})

It follows

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix}$$

then only θ_{13} contributes to the mixing.

Note that in this approximation:

- δ is unobservable
- sign(±∆m²) is unobservable

•
$$P(\bar{v}_e \rightarrow \bar{v}_e) = P(v_e \rightarrow v_e)$$

2. Oscillation searches sensitive to Δm^2

1. Oscillations searches at short baseline (SBL) reactors

The short-baseline reactor experiment CHOOZ (1998)

Probably (one of) the most cited **negative** results ! First data: Phys. Lett. B 466, 415 (1999) > 1550 citations Final data: Eur. Phys. J. C 27, 331 (2003) > 950 citations

Gianluigi Fogli

Production

Reactors: intense sources of \bar{v}_e (~ 6×10²⁰/s/reactor) Typical available neutrino energy E ~ few MeV

Detection

Results

Expected spectrum (no oscill.):

Distorted with oscillations (qualitative):

CHOOZ: no oscillations within few % error

Interpretation

We have seen: $P_{ee} = 1 - \sin^2(2\theta_{13}) \sin^2(\Delta m^2 L/4E_v)$

For any value of Δm^2 in the range allowed by atmospheric data (see next), we get stringent upper bound on θ_{13}

 $sin^2 \theta_{13} < few \%$ (depending on Δm^2)

... Nobody could know at that time, but θ_{13} was just behind the corner (less than a factor of two in sensitivity!)

In any case, it was clear that, to reach higher θ_{13} sensitivity, it needs to use a second (close) detector to reduce systematics through **far/near** comparison

But new reactor experiments have been projected and are working at present with near & far detectors (ND & FD)

2012: discovery of θ_{13} > 0! (value obtained at ~ fixed Δm^2)

Results: disappearance at FD with respect to ~ unoscillated signal at ND. Double Chooz results (FD only) also consistent with Daya Bay & RENO. Further data and spectral analyses expected in the near future.

Gianluigi Fogli

The 2012 Reactor results are already included in the PDG Review

Interestingly: value of θ_{13} was previously hinted. Weaker signals were also coming from (see later):

But now, let us proceed with other expt's mainly sensitive to $\Delta m^2 \rightarrow$

Gianluigi Fogli

Exercise # 3: One-dominant-mass-scale approximation (vacuum)

It can be proved that, in experiments mainly sensitive to Δm^2 , i.e. with

$$\frac{\Delta m^2 x}{4E} \sim O(1) \qquad \text{and} \qquad \frac{\delta m^2 x}{4E} << 1$$

the oscillation probabilities depend only on $|\Delta m^2|$ and on the mixing with v_3 (elements $|U_{\alpha 3}|$, governed by θ_{23} and θ_{13}):

$$P_{\alpha\alpha} = P(\overleftarrow{v}_{\alpha} \rightarrow \overleftarrow{v}_{\alpha}) \simeq 1 - 4 |U_{\alpha3}|^{2}(1 - |U_{\alpha3}|^{2}) \sin^{2}\left(\frac{\Delta m^{2}x}{4E}\right)$$
$$P_{\alpha\beta} = P(\overleftarrow{v}_{\alpha} \rightarrow \overleftarrow{v}_{\beta}) \simeq 4 |U_{\alpha3}|^{2}|U_{\beta3}|^{2} \sin^{2}\left(\frac{\Delta m^{2}x}{4E}\right) \qquad \alpha \neq \beta$$

where $|U_{e3}|^2 = s_{13}^2$, $|U_{\mu3}|^2 = c_{13}^2 s_{23}^2$, $|U_{\tau3}|^2 = c_{13}^2 c_{23}^2$. Typically

- no sensitivity to $(\delta m^2, \theta_{12})$ of course, but also:
- no sensitivity to hierarchy or CP violating phase δ
- no difference v/\bar{v} .

Phenomenological note

The one-dominant-mass-scale approximation can be applied in several cases:

- atmospheric neutrino expts. (ATM) SuperKamiokande, ...
- long-baseline accelerator expts. (LBL) K2K, MINOS, T2K, OPERA, ...
- short-baseline reactor expts. (SBR) CHOOZ, D. CHOOZ, Daya Bay, RENO, ...

$$\begin{split} & \text{OPERA (LBL)}: \quad P(\nu_{\mu} \rightarrow \nu_{\tau}) \simeq \cos^{4}\theta_{13} \sin^{2}2\theta_{23} \sin^{2}\left(\frac{\Delta m^{2}x}{4E}\right) \qquad (*) \\ & \text{ATM + LBL} : \quad P(\nu_{\mu} \rightarrow \nu_{\mu}) \simeq 1 - 4 \ c_{13}^{2} \ s_{23}^{2} \ (1 - c_{13}^{2} \ s_{23}^{2}) \sin^{2}\left(\frac{\Delta m^{2}x}{4E}\right) \qquad (*) \\ & \text{ATM + LBL} : \quad P(\nu_{\mu} \rightarrow \nu_{e}) \simeq \sin^{2}\theta_{23} \sin^{2}2\theta_{13} \sin^{2}\left(\frac{\Delta m^{2}x}{4E}\right) \qquad (**) \\ & \text{SBR} : \quad P(\nu_{e} \rightarrow \nu_{e}) \simeq 1 - \sin^{2}2\theta_{13} \sin^{2}\left(\frac{\Delta m^{2}x}{4E}\right) \qquad (**) \end{split}$$

reduces to the 2v form for $\theta_{13} \rightarrow 0$ (pure $v_{\mu} \rightarrow v_{\tau}$ oscillations) (*) vanishes for $\theta_{13} \rightarrow 0$

Gianluigi Fogli

(**)

2. Oscillations searches with atmospheric neutrinos

The 1998 Super-Kamiokande breakthrough

(T. Kajita at Neutrino' 98, Takayama)

 \leftarrow

The atmospheric v flux

Same v flux from opposite solid angles (up-down symmetry)

[Flux dilution (~ $1/r^2$) is compensated by a larger production surface (~ r^2)]

Should be reflected in symmetry of event zenith spectra, if energy & angle can be reconstructed well enough

RESULTS SK zenith distributions

Observations over several decades in L/E:

- v_e induced events: ~ as expected
- \mathbf{v}_{μ} induced events: clear "disappearance" from below

Interpretation in terms of oscillations:

- Channel $v_{\mu} \rightarrow v_{e}$? No (or subdominant) \leftarrow CHOOZ OK!
- Channel $v_{\mu} \rightarrow v_{\tau}$? Yes (dominant)

One-mass-scale approximation (for $\theta_{13} = 0$):

$$P_{\mu\tau} = sin^2(2\theta_{23}) sin^2(\Delta m^2 L/4E_{\nu})$$

[In this channel, oscillations are ~ vacuum-like, despite the presence of Earth matter]

Results consistent with other atmospheric experiments using different techniques (MACRO, Soudan2) but with lower statistics.

Dedicated L/E analysis in SK "sees" half-period of oscillations

1st oscillation dip still visible despite large L & E smearing

Strong constraints on the parameters (Δm^2 , θ_{23})

Super-K I+II+III+IV Data –

Now more attention to e-like events, to "squeeze" subleading effects

Gianluigi Fogli

3. Oscillations searches at long baseline (LBL) accelerators

(K2K, MINOS, OPERA, T2K)

"Reproducing atmospheric v_{μ} physics" in controlled conditions

K2K, MINOS, T2K supplemented by near detectors to measure $P_{\mu\mu}$ (disappearance).

Results in muon neutrino disappearance mode, $P_{\mu\mu}$

K2K

MINOS

T2K

1st oscillation dip observed

[Exotic explanations without dip (decay, decoherence) excluded]

Testing dominant oscillations via τ appearance: **OPERA**

Three " τ needles" found ! (consistently with expected signal)

Gianluigi Fogli

Interpretation

Once more ... dominant $P_{\mu\tau} = \sin^2(2\theta_{23}) \sin^2(\Delta m^2 L/4E_{\nu})$

Oscillation parameters consistent among atm/LBL experiments... ... with recent, possible hints of non-maximal mixing

The format of such a "2v'' plot is, however, obsolete...

4. A note about the parameters Δm^2 and θ_{23}

They are mainly determined by ATM + LBL experiments via $P(v_{\mu} \rightarrow v_{\mu})$ (disappearance).

•
$$P_{\mu\mu}$$
 is octant symmetric (i.e. invariant for $\theta_{23} \rightarrow \frac{\pi}{2} - \theta_{23}$) only in the limit
 $\delta m^2 \rightarrow 0 \quad and \quad \theta_{13} \rightarrow 0 \quad \Longrightarrow \quad P_{\mu\mu} \cong 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m^2 x}{4E}\right)$

For $\theta_{13} \neq 0$ it is no longer octant-symmetric:

$$\mathsf{P}_{\mu\mu} \cong 1 - 4 \ \mathsf{c}_{13}^2 \mathsf{s}_{23}^2 \left(1 - \mathsf{c}_{13}^2 \mathsf{s}_{23}^2\right) \sin^2\left(\frac{\Delta \mathsf{m}^2 x}{4\mathsf{E}}\right)$$

• Further effects ($\delta m^2 \neq 0$, matter) also contribute to the asymmetry

Because of the asymmetry, it needs to unfold the 2nd octant, in order to see what is the octant to which θ_{23} belongs.

Typical abscissa: either $sin^2\theta$ (linear scale) or $tan^2\theta$ (log scale)
This is even more important in the light of the

v_e appearance in T2K (2012)

The appearance has been confirmed a few days ago (it will be important even in MINOS), and is consistent with the same θ_{13} measured at reactors (up to subleading oscillation terms).

Indeed

LBL appearance: $P_{\mu e} = sin^2 \theta_{23} sin^2 (2\theta_{13}) sin^2 (\Delta m^2 L/4E_v) + corrections$

since it is NOT octant symmetric, anticorrelates θ_{23} and θ_{13} : the lower θ_{23} , the higher θ_{13} .

The corresponding LBL contours shown by T2K may be shifted to the left (right) for higher (lower) θ_{23} , due to the anti-correlation effect seen before ...

38

Gianluigi Fogli

The corresponding LBL contours shown by T2K may be shifted to the left (right) for higher (lower) θ_{23} , due to the anti-correlation effect seen before ...

... this introduces obvious consequences for the comparison with $\theta_{23}\text{-independent}$ SBL reactor data

We will see the relevance of the point later, in the presentation of the global analysis.

4. A note on perspectives

The previous experiments (LBL + ATM + SBR) allow set constraints on $|\Delta m^2|$ and on the third-column elements of the mixing matrix (in absolute value)

$$|U| = \begin{pmatrix} \cdot & \cdot & |U_{e3}| \\ \cdot & \cdot & |U_{\mu3}| \\ \cdot & \cdot & |U_{\tau3}| \end{pmatrix} \leftarrow \text{functions of } \theta_{23}, \theta_{13}$$

- Next frontier: subleading effects related to sign(Δm^2), δ , θ_{12} , δm^2 , matter
- E.g., in atmospheric neutrinos, all these effects are present and must be accounted for in state-of-the-art analyses.
- Unfortunately, it is difficult to observe (and then disentangle) them within the current uncertainties.

3. Oscillation searches sensitive to δm^2

Exercise # 4: experiments sensitive to δm^2 in the limit $\Delta m^2 \rightarrow \infty$

Previously we have considered expts. with sensitivity to Δm^2 in the limit $\delta m^2 \rightarrow 0$. Conversely, there are expts. with leading sensitivity to δm^2 , for which one can take the limit $\Delta m^2 \rightarrow \infty$:

$$\frac{\delta m^2 x}{4E} \sim O(1) \qquad \qquad \frac{\Delta m^2 x}{4E} >> 1$$

This is the case, for instance, of long-baseline reactor experiments (KamLAND) with large x and relatively low E. At low E (E ~ few MeV), the main observable is the **disappearance probability** P_{ee} . It can be proved that

$$\mathsf{P}_{ee} \simeq \cos^4 \theta_{13} \left[1 - \sin^2 2\theta_{12} \sin^2 \left(\frac{\delta m^2 x}{4E} \right) \right] + \sin^4 \theta_{13}$$

namely, the 3v probability (for $\theta_{13} \neq 0$) is related to the 2v probability (at $\theta_{13} = 0$) by the relation:

$$P_{ee}^{3v} = \cos^4 \theta_{13} P_{ee}^{2v} + \sin^4 \theta_{13}$$

independently of hierarchy, v/\bar{v} , CP.

Gianluigi Fogli

It is important to note that the previous relation for P_{ee}^{3v} in its general form

$$P_{ee}^{3v} = c_{13}^{4} P_{ee}^{2v} (\delta m^{2}, \theta_{12}) + s_{13}^{4}$$

holds not only for KamLAND, but also for solar neutrinos, where, however, P_{ee}^{2v} takes a very different form due to matter effects in the Sun.

Therefore, via P_{ee}^{3v} , solar + KamLAND experiments allow to set constraints on δm^2 and on the 1st row elements of the mixing matrix (in absolute value)

$$|\mathbf{U}| = \begin{pmatrix} |\mathbf{U}_{e1}| & |\mathbf{U}_{e2}| & |\mathbf{U}_{e3}| \\ \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet \end{pmatrix} \leftarrow \text{functions of } \theta_{12}, \theta_{13}$$

Summary of leading sensitivity:

SBL reactors	\rightarrow		θ_{13}	$ \Delta m^2 $
ATM + LBL accel.	\rightarrow	θ_{23}	θ_{13}	$ \Delta m^2 $
Solar + KamLAND	\rightarrow	θ_{12}	θ_{13}	δm²

Gianluigi Fogli

1. Hamiltonian for v oscillations in matter (the MSW effect)

It was first realized by Wolfenstein, and later elaborated by Mikheyev and Smirnov, that neutrinos traveling in matter receive a contribution to coherent forward scattering, in the form of a tiny interaction energy $V_{\alpha\beta}$:

The Hamiltonian in the flavor basis reads

Within the Standard Model and within ordinary matter

So the relevant term is the CC interaction $v_e e^- \rightarrow v_e e^-$. No analogous for μ and τ , absent in the ordinary matter.

Gianluigi Fogli

It turns out that the V_{CC} interaction energy is

 $V = \sqrt{2} G_F N_e$

where G_F is the Fermi constant, N_e the electron number density and $V \rightarrow -V$ for $v \rightarrow \bar{v}$.

Then, the Hamiltonian of v propagation in matter reads:

$$H_{\text{flavor}} = \frac{1}{2E} U \begin{pmatrix} m_1^2 \\ m_2^2 \\ m_3^2 \end{pmatrix} U^{\dagger} + \frac{1}{2E} \begin{pmatrix} A \\ 0 \\ 0 \end{pmatrix} \text{ with } A = 2\sqrt{2} G_F N_e E$$

The relative size of matter/vacuum terms is given by $A/\Delta m_{ij}^2$. Roughly speaking, one may expect sizable effects for $A/\Delta m_{ij}^2 \sim O(1)$.

The dependence A=A(x) makes the evolution non-trivial in many cases.

Gianluigi Fogli

Exercise # 5: 2v oscillation in matter at constant density

It can be proved that in the 2v limit ($\theta_{13} = 0$), the v_e survival probability reads:

$$P_{ee}^{2n}(\text{matter}) = 1 - \sin^2 2\theta_{12} \sin^2 \left(\frac{\delta \tilde{m}^2 x}{2E}\right)$$
 for $N_e = \text{const.}$

i.e., it has the same vacuum-like structure, but with the replacements:

$$\sin 2\theta_{12} = \frac{\sin 2\theta_{12}}{\sqrt{\left(\cos 2\theta_{12} - \frac{A}{\delta m^2}\right)^2 + \sin^2 2\theta_{12}}}$$

$$\delta \mathbf{m}^2 = \delta \mathbf{m}^2 \frac{\sin 2\theta_{12}}{\sin 2\theta_{12}}$$

with
$$A = \pm 2\sqrt{2} G_F N_e E$$
 with $-\begin{cases} + \text{ for } v \\ - \text{ for } \overline{v} \end{cases}$

2. The MSW resonant effect

For $A/\delta m^2 > 0$ the effective parameters have a resonant behaviour around

$$\frac{A}{\delta m^2} \simeq \cos 2\theta$$

MSW resonance

Note: only for v, no resonance for \overline{v} (it is A < 0).

Limiting cases:

 $A/\delta m^2 << 1:$ $(\delta m^2, \theta) \sim (\delta m^2, \theta)$ \leftarrow vacuum-like behaviour $A/\delta m^2 \sim \cos \theta:$ $(\delta m^2, \theta) \sim (\delta m^2 \sin 2\theta, \pi/4)$ \leftarrow resonant behaviour $A/\delta m^2 >> 1:$ $(\delta m^2, \theta) \sim (A, \pi/2)$ \leftarrow matter dominance

Gianluigi Fogli

Exercise # 6: 2v oscillation in matter with slowly varying density

If $N_e(x)$ changes slowly from $x = x_i$ (with $\hat{\theta} = \hat{\theta}_i$) to $x = x_f$ (with $\hat{\theta} = \hat{\theta}_f$) while oscillations are fast, then the averaged P_{ee} probability takes the form:

$$P_{ee}^{2v} \sim \cos^2 \theta_i \cos^2 \theta_f + \sin^2 \theta_i \sin^2 \theta_f \leftarrow adiabatic approximation$$

... and its application to solar neutrinos

Indeed, it turns out that, for the $(\delta m^2, \theta_{12})$ values chosen by nature, the adiabatic approximation can be applied to solar v_e .

In this case, $\tilde{\theta}_{12}(x_f) = \theta_{12}$ (vacuum value at the exit from the Sun), while $\tilde{\theta}_{12}(x_i)$ must be evaluated at the production point x_i .

Limiting cases:

 $\begin{array}{l} \mathsf{E} \lesssim \mathsf{few} \; \mathsf{MeV} \; (\mathsf{vacuum dominance}) : \; \mathsf{A}/\delta \mathsf{m}^2 \lesssim 1 \; \; \mathsf{and} \; \; \widetilde{\theta}_{12}(\mathsf{x}_i) \lesssim \theta_{12} \\ & \mathsf{P}_{ee} \simeq \mathsf{c}_{12}^4 + \mathsf{s}_{12}^4 = 1 - \frac{1}{2} \mathsf{sin}^2 2 \theta_{12} \\ & \mathsf{This} \; \mathsf{is} \; \mathsf{the} \; \mathsf{averaged vacuum probability, \; \mathsf{octant symmetric.}} \\ & \mathsf{E} \gtrsim \mathsf{few} \; \mathsf{MeV} \; (\mathsf{matter dominance}) : \; \mathsf{A}/\delta \mathsf{m}^2 \gtrsim 1 \; \; \mathsf{and} \; \; \widetilde{\theta}_{12}(\mathsf{x}_i) \sim \frac{\pi}{2} \\ & \mathsf{P}_{ee} \simeq \; \mathsf{sin}^2 \theta_{12} \\ & \mathsf{This} \; \mathsf{is} \; \mathsf{the} \; \mathsf{matter-dominated probability, \; \mathsf{octant-asymmetric.} \end{array}$

The P_{ee} transition from "low" to "high" E is a signature of matter effects in the Sun.

Thanks to matter effects we can determine the octant of the mixing angle θ_{12} .

3. Solar neutrinos

Chlorine (Homestake) Gallium (GALLEX/GNO, SAGE) Water (SK, SNO, Borexino) Deuterium (SNO)

Detection

Radiochemical: count the decays of unstable final-state nuclei. (low energy threshold, but energy and time info lost/integrated)

 ${}^{37}\text{Cl} + \nu_e \rightarrow {}^{37}\text{Ar} + e \quad (\text{CC}) \qquad \text{Homestake}$ ${}^{71}\text{Ga} + \nu_e \rightarrow {}^{71}\text{Ge} + e^- \quad (\text{CC}) \qquad \text{GALLEX/GNO, SAGE}$

Elastic scattering: events detected in real time with either "high" threshold (Č, directional) or "low" threshold (scintillators)

 $v_x + e^- \rightarrow v_x + e^-$ (NC,CC) SK, SNO, Borexino

Interactions on Deuterium: CC events detected in real time; NC events separated statistically + using neutron counters.

$$v_e + d \rightarrow p + p + e^-$$
 (CC)

 $v_x + d \rightarrow p + n + v_x$ (NC)

SNO (Sudbury Neutrino Observatory)

Results

All CC-sensitive results indicated a v_e deficit...

... as compared to solar model expectations

Gianluigi Fogli

Interpretation

In the "past millennium": Oscillations? Maybe, but...

- large uncertainties in the parameter space or solar model
- no clear evidence for flavor transitions ("smoking gun")

E.g., in Gallium expts:

"matter" (MSW) solutions

"vacuum" solutions

+ many "exotic" non-oscillatory solutions ...

Gianluigi Fogli

But, in 2002 ("annus mirabilis"), one global solution was finally singled out by combination of data ("large mixing angle" or LMA).

Crucial role played by Sudbury Neutrino Observatory

The breakthrough:

in deuterium one can separate CC events (induced by v_e only) from NC events (induced by v_e, v_{μ}, v_{τ}), and double check via Elastic Scattering events (due to both NC and CC).

$$\begin{array}{ll} \mathrm{CC}: & \nu_e + d \to p + p + e \\ \mathrm{NC}: \nu_{e,\mu,\tau} + d \to p + n + \nu_{e,\mu,\tau} \\ \mathrm{ES}: \nu_{e,\mu,\tau} + e \to e + \nu_{e,\mu,\tau} \end{array}$$

 $rac{\mathrm{CC}}{\mathrm{NC}}\sim rac{\phi(
u_e)}{\phi(
u_e)+\phi(
u_{\mu, au})}$ thus:

$$\frac{\mathrm{CC}}{\mathrm{NC}} < 1 \; \Rightarrow \; \phi(\nu_{\mu,\tau}) > 0 \; \Rightarrow \; \nu_e \to \nu_{\mu,\tau}$$

CC/NC ~ 1/3 < 1 "Smoking gun" proof of flavor change. Solar model OK! Also:

CC/NC ~ Pee ~ $\sin^2\theta_{12}$ (LMA) ~1/3 < $\frac{1}{2}$ Evidence of mixing in first octant + matter effects

Gianluigi Fogli

Recent, direct confirmation of adiabatic Pee pattern at LMA in a single solar v experiment: BOREXINO at Gran Sasso

Overall picture including final SNO data [Spectral rise of SNO data at low energy not yet directly observed - anomaly?]

 P_{ee} pattern

4. KamLAND neutrinos

Also in 2002...: 1000 ton mineral oil detector, "surrounded" by nuclear reactors producing anti- v_e . Characteristics:

 $A/\delta m^2 \ll 1$ in Earth crust (vacuum approxim. OK) $L \sim 100-200$ km $E_v \sim few MeV$

With previous $(\delta m^2, \theta)$ parameters it is $(\delta m^2 L/4E) \sim O(1)$ and reactor neutrinos should oscillate with large amplitude (large θ)

A long-baseline reactor experiment

Gianluigi Fogli

KamLAND results

2002: electron flavor disappearance observed

2004: half-period of oscillation observed

2007: one period of oscillation observed

Direct observation of δm^2 oscillations!

Interpretation in terms of 2v oscillations

 $(\delta m^2, \theta_{12})$ - complementarity of solar/reactor neutrinos

More refined (3v) interpretation

Going beyond dominant 2v oscillations: include subleading effects due to θ_{13} and averaged Δm^2 oscillations in vacuum/matter.

Interesting (small) effects emerge:

"Hints of θ₁₃ > 0 from global neutrino data analysis" [GLF, Lisi, Marrone, Palazzo, Rotunno, PRL 101, 141801 (2008), hep-ph/0806.2649]

2008: A hint of $\theta_{13} > 0$, caming from the slight tension on θ_{12} (solar vs KamLAND) and from different correlation between mixing angles, related to different relative signs in P_{ee} (survival probability) of solar vs KamLAND:

Slight "tension" on θ_{12} could be reduced for $\theta_{13} > 0$

2009: there were already a few independent hints of $\theta_{13} > 0$:

The grand total was:

sin²θ₁₃ ≈ 0.02 ± 0.01 (all 2009 data) arXiv:0905.3549

which represented an encouraging – and experimentally testable – 2σ indication. Actually, as already discussed, T2K (appearance) found similar θ_{13} values in 2011, and a definitive measurements emerged in 2012 from reactors (disappearance).

PDG 2012: $\sin^2\theta_{13} \approx 0.024 \pm 0.003$

This is an important test of the overall consistency of 3v oscillations.

Gianluigi Fogli

4. Global 3v analysis of all oscillation data (within the 3v framework)

In the following:

- Oscillation parameters are extracted with their correlations from solar, atmospheric, accelerator and reactor neutrino data, as of summer 2012 (Neutrino Conference in Kyoto).
- Full 3v probabilities included, no approximation.

Note about methodology

We combine first LBL accelerator data with solar+KamLAND data, since the latter provide the "solar parameters" needed to calculate the full 3v LBL probabilities in matter. So, the sequence of contraints will be shown as:

(LBL + Solar + KamLAND) + (SBL reactor) + (SK atm)

Extracted from

G.L.F., E. Lisi, A. Marrone, D. Montanino, A. Rotunno, A. Palazzo, "Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches" Phys. Rev. D 86, 013012 (2012), arXiv:1205.5254v3]

Gianluigi Fogli

4.1 $(\theta_{13}, \theta_{23})$ correlations

From 2012 LBL appearance + disappearance data plus solar + KamLAND data:

For both hierarchies, NH & IH:

- Latest LBL disappearance data from T2K and MINOS favor nonmaximal θ₂₃
- Two quasi-degenerate θ_{23} solutions are seen to emerge, in some anticorrelation with θ_{13} . The two solutions merge above ~1 σ .
- Solar + KamLAND data happen to prefer just $\sin^2\theta_{13} \sim 0.02$, and are unable to solve the octant degeneracy.

Adding SBL reactor data (Chooz, Double Chooz, Daya Bay, RENO):

Adding SK atm data: the preference for θ_{23} in the 1st octant is more evident No hint about hierarchy yet...

Gianluigi Fogli

4.2 $(\theta_{13}, \delta_{CP})$ correlations

With only LBL appearance + disappearance data plus solar + KamLAND data:

Adding SBL reactor data (Daya Bay, RENO, Double Chooz):

SBL reactor data restrict θ_{13} and reduce degeneracy effects on the n σ contours.

Gianluigi Fogli

Adding SK atmospheric data:

Gianluigi Fogli

4.3 Conclusions

Previous hints of θ₁₃ > 0 are now measurements! (and basically independent of old/new reactor fluxes)

Some hints of θ_{23} in the 1st octant are emerging at ~ 2σ , worth exploring by means of atm. and LBL+reac. data

A possible hint of $\delta_{CP} \sim \pi$ is emerging from atm. data [Is the PMNS matrix real?]

So far, no hints for NH <table-cell-rows> IH
Parameter	Best fit	1σ range	2σ range	3σ range
$\delta m^2/10^{-5} \text{ eV}^2 \text{ (NH or IH)}$	7.54	7.32 - 7.80	7.15 - 8.00	6.99 - 8.18
$\sin^2 \theta_{12} / 10^{-1}$ (NH or IH)	3.07	2.91 - 3.25	2.75 - 3.42	2.59 - 3.59
$\Delta m^2/10^{-3} \text{ eV}^2 \text{ (NH)}$	2.43	2.33 - 2.49	2.27 - 2.55	2.19 - 2.62
$\Delta m^2 / 10^{-3} \text{ eV}^2 \text{ (IH)}$	2.42	2.31 - 2.49	2.26 - 2.53	2.17 - 2.61
$\sin^2 \theta_{13} / 10^{-2} \text{ (NH)}$	2.41	2.16 - 2.66	1.93 - 2.90	1.69 - 3.13
$\sin^2 \theta_{13} / 10^{-2} $ (IH)	2.44	2.19-2.67	1.94 - 2.91	1.71 - 3.15
$\sin^2 \theta_{23} / 10^{-1} \text{ (NH)}$	3.86	3.65 - 4.10	3.48 - 4.48	3.31 - 6.37
$\sin^2 \theta_{23} / 10^{-1} $ (IH)	3.92	3.70 - 4.31	$3.53 - 4.84 \oplus 5.43 - 6.41$	3.35 - 6.63
δ/π (NH)	1.08	0.77 - 1.36	_	_
δ/π (IH)	1.09	0.83 - 1.47	—	—

Numerical 1σ , 2σ , 3σ ranges:

 Sin2 θ_{12} Sin2 θ_{13} Sin2 θ_{23} Am2

 2.6%
 5.4%
 10%
 14%
 3.0%

Hierarchy differences well below 1σ for various data combinations

Gianluigi Fogli

With 1 digit accuracy: 3v framework in just one slide! Flavors = e µ T

Knowns: $\delta m^2 \sim 8 \times 10^{-5} eV^2$ $\Delta m^2 \sim 2 \times 10^{-3} eV^2$ $\sin^2 \theta_{12} \sim 0.3$ $\sin^2 \theta_{23} \sim 0.5$ $\sin^2 \theta_{13} \sim 0.02$ Unkowns: δ (CP) sign(Δm^2) octant(sin² θ_{23}) absolute mass scale Dirac/Majorana nature

Neutrino Masses, Mixings and Phases: Theory vs. Experiment, Paris, July 24th, 2013

Ecole Internationale Daniel Chalonge 17th Paris Cosmology Colloquium 2013

"The new standard model of the Universe: Lambda Warm Dark Matter (LWDM) Theory vs. Observations"

Thanks for your attention!