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used to be

VWMAP at Lagrange 2 (L2) Point

June 2001:
VWMAP launched!

February 2003:
The first-year data release

March 2006:
The three-year data release

March 2008:
The five-year data release

January 2010:
The seven-year data release

September 8,201 0: December 21, 2012:
WMAP left L2 The final, nine-year data release
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WMAP 9-Year Papers

¢ Bennett et al., Final Maps and Results,” accepted for publication
in ApJS, arXiv:1212.5225

¢ Hinshaw et al., "Cosmological Parameter Results,” accepted for
publication in Ap|S, arXiv:1212.5226



9-year Science Highlights

® The effective number of relativistic species is consistent
with three

® The joint constraint on the helium abundance and the
number of relativistic species from CMB strongly
supports Big Bang nucleosynthesis

® Single-field slow-roll inflation continues to be
supported by the data, with much restricted range of
the parameter space
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What changed!?

® An improved analysis! The error bar decreased by more
than expected for the number of years (9 vs 7).Why!?

® VVe now use the optimal (minimum variance) estimator
of the angular power spectrum.

® Previously, we estimated C, for low-| (I<600) and
high-l (1I>600) separately. No weighting for low-| and
inverse-noise-weighting for high-I.

® This results in a sub-optimal estimator near |1~600.

® We now use the optimal (S+N)~! weighting.
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9-year (sub-optimal) vs 9-year (optimal)
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Parameter Nine-year Seven-year

Fit parameters

Qph? 0.02264 4 0.00050  0.022497-000=-
el 0.1138 +0.0045  0.1120 % 0.0056
Qa 0.721 4 0.025 0,787 8 o
10°AS 2.41 £ 0.10 2434 0.11
N 0.972 4 0.013 0.967 £ 0.014
T 0.089 £ 0.014 0.088 & 0.015
Derived parameters
to (Gyr) 13.74 & 0:11 13.77 £0.13
Ho (km/s/Mpc) D22 43 5 s o
o8 0.821 4 0.023 1821 8 I
Q 0.0463 4+ 0.0024  0.0455 £ 0.0028
Qc 0.233 £ 0.023 0.228 £ 0.027

2 W6:E 1.1 10.6 = 1.2



Adding the small-scale
CMB data

® Atacama Cosmology Telescope ( )

® 3 6-m telescope in Chile, led by Lyman Page (Princeton)

® C,from Das etal. (2011)
® South Pole Telescope (SPT)

® 3 |0-m telescope in South Pole, led by John Carlstrom
(Chicago)

® Cfrom Keisler et al. (201 1); Reichardt et al. (2012)

These data are not latest [Story et al. for SPT; Sievers et al. for ACT]
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The number of “neutrino™ species

total radiation density: Or = Py + Pv Tt Per

photon density: T b
_ 1/3
neutrino density: Py = 27{; N, T? where Ly - (4/11) /7 T
N, = 3.04
, , 77° A
neutrino+extra species: P, + Per = 50 Negr 1

7 [ 4\*3
pr=py |1+ < (ﬁ) Netr| = po(1+ 0.2271Nog)
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VWVhat the extra radiation
species does

® Extra energy density increases the expansion rate at
the decoupling epoch.

® Smaller sound horizon: peak shifts to the high |

® [arge damping-scale-to-sound-horizon ratio, causing
more Silk damping at high |

® Massless free-streaming particles have anisotropic
stress, affecting modes which entered the horizon
during radiation era.
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“Neutrinos’” have
anisotropic stress

dS
T = / (2 )3 P (pzp] — _523> f(xa pat)

® This changes metric perturbations as

]{72 ((I)H T (I)A) — —87TGCL p?T
tr(i-)  0-0

® This changes the early Integrated-Sachs-Wolfe effect (ISWV)
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Effect of helium on '

We measure the baryon number density, np, from the |st-
to-2nd peak ratio.

For a given np, we can calculate the number density of
electrons: ne=(1—-Yp/2)ne.

As helium recombined at z~ 1800, there were even fewer
electrons at the decoupling epoch (z=1090): ne=(1-Yp)ne.

More helium = Fewer electrons = Longer photon mean
free path 1/(01ne) = Enhanced Silk damping
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Implications for Inflation

® Two-point function analysis: the tensor-to-scalar ratio, r,
and the primordial spectral tilt, ns

® Three-point function analysis: are fluctuations
consistent with Gaussian?
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Assuming no tensor modes

e WMAP9 only: ns = 0.972 *+ 0.013

e WMAP9+CMB: n, = 0.965 + 0.010

e WMAP9+CMB+BAO: n; = 0.958 + 0.008

e WMAP9+CMB+BAO+Ho: ns = 0.961 + 0.008

® Confirmed by Planck+WMAP%pol: ns = 0.960 = 0.007
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Congratulations,

Slava and Alexei!
N GRUBER

F O U N D A T I O N

July 11,2013

2013 Gruber Cosmology Prize Citation

The Gruber Foundation proudly presents the 2013 Cosmology Prize to Viatcheslav Mukhanov and Alexei Starobinsky for

their profound contribution to inflationary cosmology and the theory of inflationary perturbations of the metric. These
developments changed our views on the origin of our universe and on the mechanism of formation of its structure.

Ns~0.96 [Mukhanov & Chibisov 1981],
now observed;
and the R? inflation [Starobinsky 1980],
continues to fit the data rather well

Viatcheslav Mukhanov Alexei Starobinsky y
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R? Inflation [Starobinsky 1980]

1

§ = 5 / d*z\/—q (R + &RQ)

® This theory is conformally equivalent to a theory with a
canonically normalized scalar field with a potential given

> V(D) = — (1 - e—\/2/3‘1’>2

~ 8a
where [very flat potential for large Y —> smaller r]

U = /3/2In(1 + 2aR) )




E@?R [Futamase & Maedal989]

f = %/d/‘la:\/—g (1 — {(252) R

® The predictions of this model for the tilt and tensor-to-

scalar ratio are identical to R2inflation! Komatsu &
Futamase (1999) showed:

_ 12146
N2 6¢

® S50, the tensor-to-scalar ratio is tiny.

r ~ 0.005
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Bispectrum

® Three-point function!

® Br(ki, k> ks)
= <Ck1CiaCk3> = (amplitude) x (217)30(k+ka+k3)F(ki,ka,k3)

T l model-dependent function

Primordial fluctuation L
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(a) squeezed triangle (b) elongated triangle (c) folded triangle
(k =k >>k,) (k,=k_+k,) (k, =2k, =2k,)

MOST IMPORTANIT

(d) isosceles triangle (e) equilateral triangle
(k >k =k ) (k =k =k)




Probing Inflation (3-point Function)

® [nflation models predict that primordial fluctuations are very
close to Gaussian.

® |n fact,ALL SINGLE-FIELD models predict a particular form
of 3-point function to have the amplitude of fnL=0.02.

® Detection of fne>1 would rule out ALL single-field models!

® No detection of 3-point functions of primordial curvature
perturbations. The 68% CL limit is:

® fauL = 37 + 20 (10)

® The WMAP data are consistent with the prediction of

simple single-field inflation models: |-ns=r=fne
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Acoustic signatures in the primary microwave background bispectrum

Eiichiro Komatsu™ and David N. Spergel’
Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544

(Received 25 October 2000; published 13 February 2001)

If the primordial fluctuations are non-Gaussian, then this non-Gaussianity will be apparent in the cosmic
microwave background (CMB) sky. With their sensitive all-sky observation, MAP and Planck satellites should
be able to detect weak non-Gaussianity in the CMB sky. On a large angular scale, there 1s a stmple relationship
between the CMB temperature and the primordial curvature perturbation: AT/T=—®/3. On smaller scales,
however, the radiation transfer function becomes more complex. In this paper, we present the angular bispec-
trum of the primary CMB anisotropy that uses the full transfer function. We find that the bispectrum has a

series of acoustic peaks that change a sign and a period of acoustic oscillations 1s twice as long as that of the
angular power spectrum. Using a single non-linear coupling parameter to characterize the amplitude of the
bispectrum, we estimate the expected signal-to-noise ratio for COBE, MAP, and Planck experiments. In order
to detect the primary CMB bispectrum by each experiment, we find that the coupling parameter should be_
larger than 600, 20 and 5 f01 COBE MAP and Planck €X] elllllellts 1evs cﬁvél ‘ Véllf01 the ideal noise-free
'and infinitesimal thin-beam expernnent the par ameter should be lary oel than 3. We have included effects from
the cosmic variance, detector noise, and foreground sources 1n the signal-to-noise estimation. Smce the simple
mﬁatlon scenanos redict that the parameter 1s 01del of 0 01 the detectlon of the rnn'

mentsshoﬂ 1olmat1f1hos SC‘IOS We compare the sensmVlty of the pmnaly

b'sp'i’*ll to the p11a1y s'k'wnesé énd -'-(.)—ICll'd: - l'at': 'ﬁlﬁ'_we can compute the predicted form of the
bispectrum, it becomes a “~‘matched filter’” for detecting the non-Gaussianity in the data and a much more
powerful tool than the skewness. For example, we need the coupling parameter of larger than 800, 80, 70, and
60 for each relevant experiment in order to detect the primary skewness. We also show that MAP and Planck
can separate the primary bispectrum from various secondary bispectra on the basis of the shape difference. The
primary CMB bispectrum 1s a test of the inflationary scenario and also a probe of the non-linear physics in the
very early umiverse.
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Statistical Anisotropy

® |s the power spectrum anisotropic!
® P(k) = P(|k|)[1+g*(cosO)’]

® This makes shapes of temperature spots anisotropic on
the sky.

® Statistically significant detection of g*
® |s this cosmological?

® The answer is no: the same (identical!) effect can be
caused by ellipticity of beams
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This is coupled with the scan pattern

® VWMAP scans the ecliptic poles many more times and
from different orientations.

® T[hus, the averaged beam is nearly circular in the
poles.

® The ecliptic plane is scanned less frequently and from
limited orientations.

® Thus, the averaged beam is more elliptical in the
plane.

® This is exactly what the anisotropic power spectrum
gives.
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Creating a2 map with
a circular beam

® Ve create a map in which the elliptical beam shape is
deconvolved. The resulting map has an effective circular
beam.

® This map is not used for cosmology, but used for the
analysis of foregrounds and statistical anisotropy.
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Normal Map Normal Map Residuals

® A deconvolved image of

a supernova remnant
“Tau A” at 23 GHz

® Deconvolved image is

42 .
0 mK 100 more circular, as
Beam Sym. Map Beam Sym. Map Residuals expected

Deconvolved map
does not show the
anisotropic power
spectrum anymore!

0] mK 100
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Summary

® The minimal, 6-parameter ACDM model continuesig

describe all the data we have
® No significant deviation from the minimal model
® Rather stringent constraints on inflation models

® Strong support for Big Bang nucleosynthesis with the
standard effective number of neutrino species

® Anisotropic power spectrum is due to elliptical beams

¢ , ; ;
These results... complete the WMAP Team’s formal analysis and

interpretation of the WMAP data.” (Hinshaw et al. 2012)
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