X-ray Constraints on Sterile Neutrinos + General Phase Space Density Constraints on the DM Particle

Casey R. Watson Millikin University July 25, 2013

<u>Many Thanks to</u> My Collaborators: Zhiyuan Li (CfA/UCLA) & Joe Cheeney, Chris Pelikan, Nick Polley, Leon Yu (Millikin) and Hector J. de Vega & Norma Sanchez for inviting me.

- Properties of Sterile Neutrinos
- Models of Sterile Neutrino Interactions & Production
- X-ray Constraints from Previous Studies
 - CXB
 - Galaxy Clusters
 - Dwarf Galaxies
- The Advantages of Andromeda
- Constraints from XMM Observations of Andromeda
- Constraints from Chandra Observations of Andromeda
- The Road to Improved Constraints
 - Issues with Current-Generation Detectors
 - Expectations for Next-Generation Detectors
- Generalized Phase Space Density Constraints
- Summary & Conclusion

The Fertile Phenomenology of Sterile Neutrinos

- Non-zero active neutrino masses [1,2]
- Baryon & Lepton Asymmetries [15-20]
- Big Bang Nucleosynthesis [19]
- Evolution of the matter power spectrum [21,22]
- Reionization [23-31]
- Active Neutrino Oscillations [32-33]
- Pulsar Kicks [34-39]
- Supernovae [40-42]
- Excellent Dark Matter Particle Candidate [3-14, 43-57]
- Most Importantly: <u>Readily Testable</u>
 Can decay into detectable X-ray photons

Detecting Sterile Neutrino Radiative Decays:

If

 $E_{\gamma} = \frac{m_s}{2} \sim 1 \text{ keV}$

 $\rightarrow "\nu_{\alpha}" + \gamma$

 $1 \text{ keV} < m_s < 20 \text{ keV},$ Chandra & XMM can detect the X-ray photons associated with sterile neutrino radiative decays.

Sterile Neutrino Interactions with SM Particles

(Abazajian, Fuller, Patel 2001 [5]; Abazajian, Fuller, Tucker 2001 [6])

- *Very small* mixing $(\sin^2 2\theta \leq 10^{-7})$ between
- mass $|v_{1,2} > \&$ flavor $|v_{\alpha,s} > states:$ $|\nu_{\alpha}\rangle = \cos\theta |\nu_{1}\rangle + \sin\theta |\nu_{2}\rangle$ $|\nu_{s}\rangle = -\sin\theta |\nu_{1}\rangle + \cos\theta |\nu_{2}\rangle$
- For $m_{s} < m_{e}$, 3v Decay Mode Dominates: $\Gamma_{3v} \simeq 1.74 \times 10^{-30} s^{-1} \left(\frac{\sin^{2}2\theta}{10^{-10}}\right) \left(\frac{m_{s}}{\text{keV}}\right)^{5}$ Radiative Decay Rate is: $\Gamma_{s} \simeq 1.36 \times 10^{-32} s^{-1} \left(\frac{\sin^{2}2\theta}{10^{-10}}\right) \left(\frac{m_{s}}{\text{keV}}\right)^{5}$ $\mathcal{V}_{\mathcal{B}} \longrightarrow \mathcal{V}_{\mathcal{A}} + \gamma$

The Sterile Neutrino Radiative Decay Signal:

• Radiative Decay Luminosity:

$$\begin{split} \mathbf{L}_{\mathbf{x},\mathbf{s}} &= E_{\gamma,s} N_s^{FOV} \Gamma_s = \frac{m_s}{2} \left(\frac{M_{DM}^{FOV}}{m_s} \right) \Gamma_s \\ &\simeq \mathbf{1.2 \times 10^{33} erg \, s^{-1}} \left(\frac{M_{DM}^{FOV}}{\mathbf{10^{11}} M_{\odot}} \right) * \left(\frac{\sin^2 2\theta}{\mathbf{10^{-10}}} \right) \left(\frac{m_s}{\mathbf{keV}} \right)^5 \end{split}$$

• Measured Flux: $\Phi_{x,s} = \frac{L_{x,s}}{4\pi D^2}$ $\phi_{x,s}(\sin^2 2\theta) \simeq 1 \times 10^{-17} \operatorname{erg} \operatorname{cm}^{-2} s^{-1} \left(\frac{D}{\mathrm{Mpc}}\right)^{-2}$ $\times \left(\frac{M_{DM}^{FOV}}{10^{11}M_{\odot}}\right) \left(\frac{\sin^2 2\theta}{10^{-10}}\right) \left(\frac{m_s}{\mathrm{keV}}\right)^5$

Sterile Neutrino Production:

• Dodelson-Widrow Model [3]

• Density-Production Relationship [43]:

$$m_{s} = 55.5 \text{ keV} \left(\frac{\sin^{2}2\theta}{10^{-10}}\right)^{-0.615} \left(\frac{\Omega_{s}}{0.24}\right)^{0.5}$$

(for T_{QCD} ~ 170 MeV)

• Agrees with Asaka et al. model [48] for $1 \text{ keV} \leq m_s \leq 10 \text{ keV}$

To maximize the sterile neutrino decay signal:

$$\Phi_{x,s}(\sin^2 2\theta) \simeq 1.0 \times 10^{-17} \operatorname{erg} \operatorname{cm}^{-2} \operatorname{s}^{-1} \left(\frac{D}{\operatorname{Mpc}}\right)^{-2} \\ \times \left(\frac{M_{DM}^{FOV}}{10^{11} M_{\odot}}\right) \left(\frac{\sin^2 2\theta}{10^{-10}}\right) \left(\frac{m_s}{\operatorname{keV}}\right)^5$$

the ideal object to study is:

- nearby: small Distance D,
- $. \qquad massive: large M_{DM} (in FOV),$
- quiescent: low astrophysical background.

Astrophysical X-ray Sources:

Previous work I: Cosmic X-ray Background

Rekindled interest in m_s X-ray constraints [6].

Constraints: $m_s < 9.3 \text{ keV}$ (for DW Model v_s [3, 43]).

100

Previous work II: Galaxy Clusters

The Virgo Cluster

Advantage: HUGE $M_{DM} \sim 10^{13} M_{\odot}$ **PROBLEMS:** HUGE background; D > 10 Mpc

Constraints (for DW Model v_s [3, 43]): m_s < 8.2 keV (Virgo [44]); m_s < 6.3 keV (Virgo + Coma [13, 63]).

Advantages of Andromeda (M31)

(Watson, Li, Polley 2012, Watson, Beacom, Yuksel, Walker 2006 [66]) Nearby: D = 0.78 ± 0.02 Mpc [102, 103] LOW astrophysical background (little hot gas & bright point sources can be excised) Well-measured Dark Matter Distribution based on analyses of extensive Rotation Curve Data (Klypin, Zhao, Somerville 2002 [104], Seigar, Barth, & Bullock 2007 [105])

Prospective Sterile Neutrino Signals

Comparable to Massive Clusters without the background

Exceeding Ultra Nearby Dwarf Galaxies

$$\frac{\Phi_{M31}}{\Phi_{Clus}} = \left(\frac{M_{M31}^{FOV}}{M_{Clus}^{FOV}}\right) \left(\frac{D_{Clus}}{D_{M31}}\right)^2 \simeq \frac{\Phi_{M31}}{\Phi_{Dwarf}} = \left(\frac{M_{M31}^{FOV}}{M_{Dwarf}^{FOV}}\right) \left(\frac{D_{Dwarf}}{D_{M31}}\right)^2 \gtrsim 1$$

<u>Unresolved 5' XMM Spectrum of Andromeda</u>

(from Shirey et al. 2001 [96])

REDUCEDAstrophysical Background:

Bright point sources *removed* (in Ref. [96])

Intrinsically LOW hot gas emission

RESULTS

For $\Omega_s = 0.24 \& L = 0$ **density-production relationship** [43]:

Andromeda: $m_s < 3.5 \text{ keV}$ [66] Virgo A: $m_s < 8.2 \text{ keV}$ [44] Virgo A+Coma: **m**_s < 6.3 keV [13, 63] $m_s = 6.3 \text{ keV } \& m_s = 8.2 \text{ keV}$ decay peaks are also shown relative to Andromeda data.

Previous work III: Dwarf Galaxies

Andromeda (XMM) vs. Dwarf/MW Constraints

LMC + MW [69]

Andromeda [66] **&**

(Watson, Beacom, Yüksel, Walker 2006)

(Boyarsky, Neronov, Ruchayskiy, Shaposhnikov, Tkachev 2006) $m_{e} = 8.2 \text{ keV}$ 10 Counts/sec/keV Virgo = 6.3 ke3.5 keV = m, MW 10 0.1 0 g/cm 0.01 Andromeda LMC 2 E [keV] 5 [keV

Andromeda (XMM) vs. Cluster/Dwarf/MW

Chandra FOV of M31: $\Delta \theta = 12' - 28'$

 Raw counts associated with the 7 Chandra ACIS-I exposure regions.

 Exposure times range from 5ks to 20ks

•Central 12' is excluded because of high astrophysical background from hot gas and point sources in that region

Andromeda's Well-measured Matter Distribution:

Constraints at small radii are from Stellar Motions in the Nucleus. Three points at R>5 kpc characterize the spread in v_{rot} = 255 <u>+</u> 15 km/s. (Klypin, Zhao, Somerville 2002 [104] (KZS))

(Additional Data & updated analysis in Seigar, Barth, & Bullock 2007 [105] (SBB))

More Conservative DM Matter Distribution:

The Fraction of Andromeda's Dark Matter Mass in the Chandra field of view (FOV):

Conversion of Decay Signal to Detector Units:

NuSTAR effective area

Detection/Exclusion Criterion:

Limits on m_s from *Chandra* Observations of M31

Generalized constraints in the $m_s - sin^2 2\theta$ plane

Exclusion Regions: Milky Way (Integral): [77, 78] Cosmic X-ray Background: [61,62] Andromeda (XMM): [66] Andromeda (CXO): (Watson, Li, & Polley 2012) **Density-Production Models: Dodelson-Widrow Model** [3] **Shi-Fuller Model** [4, 53]3 L >> 10⁻¹⁰ Lines [13]

Our Chandra M31 Constraint (at L=0): m_s < 2.2 keV Tremaine-Gunn Bound: m_s > 0.4 keV (Tremaine & Gunn 1979 [108]) restricts m_s to a narrow window consistent with the range of m_s values that best explains the core of the Fornax Dwarf Spheroidal Galaxy. (Strigari, et al. 2006 [109]) Higher mass v_s WDM also remains viable if the Lepton Asymmetry is very large, i.e., L >>10⁻¹⁰

(Abazajian & Koushiappas 2006 [13])

Issues with Current Detectors I

Need larger effective Area to offset diminishing decay signal

 $\frac{dN_s}{dE_{\gamma}dt} \propto E_{\gamma}^{1.374}$

against rising backgrounds at lower Εγ.

And improved ΔE

to distinguish

adjacent lines.

Prospects for Future Constraints:

IXO Observations of Andromeda (Abazajian 2009 [111])

- IXO vs. Chandra
- ~ comparable FOV
- ~ 100 X larger Aeff
- ~ 10 X better ΔE
- ~ 10 X lower instrumental background
- ~1 Ms observation of M31 can *significantly* improve sterile neutrino constraints.

* Similar for ATHENA*

Summary II

Current *Chandra* Constraints: $m_s < 2.2 \text{ keV}$ are close to the limit of contemporary detectors.

Long-term progress will require next-generation instruments with greatly improved $A_{eff} \& \Delta E$.

To make near-term progress, examine nearby systems with the potential for large amounts of spatially separated dark matter – such as prospective DM filaments in merging galaxies, i.e., M81/M82.

Cons – DM masses not testable by lensing; minimal improvements

Phase Space Density Basics

$$Q = \frac{\rho}{\sigma^3}$$

• For a fermionic thermal relic, Hogan & Dalcanton [1] find:

$$Q_{Thermal} = 5 \times 10^{-4} \frac{(M_{\odot}/pc^3)}{(km \, s^{-1})^3} (M_X/1keV)^4$$

- adiabatic invariant
- strongly mass-dependent

Connecting the Past to the Present

 Galaxy formation processes alter Q by an unknown factor Z:

$$Z = \frac{Q_{primordial}}{Q_{today}} = \frac{Q_P}{Q_0}$$

- De Vega & Sanchez [2] explored a number of analytical methods to find Z, concluding that
 - $-1 \le Z \le 10^4$, in agreement with simulations
 - the mass of a thermal relic DM particle is ~ keV:

$$m \propto (ZQ_0)^{1/4} \cong 1-10 \,\mathrm{keV}.$$

Goals of Our Project

 Determine Z directly from the dwarf galaxy data to produce a model-independent mapping between Q_p and Q₀

 Use this Z factor to reduce the uncertainty on the dark matter particle mass from a factor of 10 to a factor of ~ 2.

Dwarf Galaxy Data

• Lowest uncertainty data from Walker et. al. [3]

	σ			ρ			r _{hf}			M(r _{hf})		
Dwarf	(k	m/s	;)	(M	l _⊖ p	[∋] pc⁻³)		(pc)		(10	(10 ⁷ M	
Carina	6.6	±	1.2	0.1	±	0.04	241	<u>+</u>	23	0.61	<u>+</u>	0.23
Draco	9.1	±	1.2	0.3	±	0.08	196	<u>+</u>	12	0.94	<u>+</u>	0.25
Fornax	11.7	±	0.9	0.042	<u>+</u>	0.007	668	<u>+</u>	34	5.3	<u>+</u>	0.9
Leo I	9.2	±	1.4	0.19	<u>+</u>	0.06	246	<u>+</u>	19	1.2	<u>+</u>	0.4
Leo II	6.6	±	0.7	0.26	<u>+</u>	0.06	151	<u>+</u>	17	0.38	<u>+</u>	0.09
Sculptor	9.2	±	1.1	0.17	<u>+</u>	0.05	260	<u>+</u>	39	1.3	<u>+</u>	0.4
Sextans	7.9	<u>+</u>	1.3	0.019	<u>+</u>	0.007	682	<u>+</u>	117	2.5	<u>+</u>	0.9
U Minor	9.5	±	1.2	0.16	<u>+</u>	0.04	280	<u>+</u>	15	1.5	<u>+</u>	0.4
C Ven I	7.6	<u>+</u>	0.4	0.025	<u>+</u>	0.003	564	<u>+</u>	36	1.9	<u>+</u>	0.2
U Ma II	6.7	±	1.4	0.32	±	0.14	140	<u>+</u>	25	0.36	<u>+</u>	0.16

$Q - r_{hf}$ Power-Law Relation

• The power-law relations from Walker et al. [3]:

Using $Q(r_{hf})$ to find Z

- We can rewrite the Q(r_{hf}) power-law in terms of:
 - the unknown, primordial \mathbf{Q}_{p} and

– an unknown radial scale, r_p:

$$Q_0 = \left(\frac{Q_p}{Z}\right) = Q_p \left(\frac{r_p}{r_{hf}}\right)^n, \text{ so } Z = \left(\frac{r_{hf}}{r_p}\right)^n.$$

Thus, determining r_p is the key to the empirical Z factor.

Finding r_p analytically

- Determine when the virial mass of the MW halo entered the horizon:
 - Earliest time causal processes could affect the PSD of DM in a MW-sized overdensity and in its primordial subhalo overdensities

$$M_{horizon}(z) = \frac{4}{3} \pi \rho_{m,0} (1+z)^3 \left(\frac{d_H(z)}{2}\right)^3 = 1.5 \pm 0.5 \times 10^{12} M_{\odot}$$

This occurs when
- z = (9.2+1.0) x 10⁴
- r_p = d_H(z)/2 = 26.5 + 6 pc (90% CL)

Finding r_p empirically

- Exploit the fact that there are two distinct dwarf galaxy subpopulations
 - Group A: low σ = 7.1 <u>+</u> 1.1 km/s

- Group B: high σ = 9.7 <u>+</u> 1.2 km/s.

Dwarf	σ ((km/s)	Dwarf	σ	(km/s)
Carina	6.6	<u>+</u> 1.2	Draco	9.1	<u>+ 1.2</u>
Leo II	6.6	<u>+</u> 0.7	Fornax	11.7	<u>+ 0.9</u>
Sextans	7.9	<u>+</u> 1.3	Leo I	9.2	<u>+</u> 1.4
C Ven I	7.6	<u>+</u> 0.4	Sculptor	9.2	<u>+ 1.1</u>
U Ma II	6.7	<u>+</u> 1.4	U Minor	9.5	<u>+ 1.2</u>

 $\sigma = 7.1 \pm 1.1 \text{ km/s}$

 $\sigma = 9.7 \pm 1.2 \text{ km/s}$

Low & High σ Populations: A & B

Empirical r_p Results

Although (β−α)⁻¹≈8, we find a small range of r_p values:

$$r_{p} = r_{hf_{A}} \left(\frac{Q_{B}}{Q_{A}} \left(\frac{r_{hf_{B}}}{r_{hf_{A}}} \right)^{\beta} \right)^{\frac{1}{\beta - \alpha}} \rightarrow r_{p} = 24.6 \pm 6 \text{ pc} (95\% \text{ CL})$$

vs. $r_{p} = 26.5 \pm 6 \text{ pc} (90\% \text{ CL})$
(analytical)

- Consistent Analytical & Empirical r_p values
- Now determine DM mass (for thermal relics):

$$\frac{m}{\text{keV}} = \left(\frac{Q_p}{A}\right)^{1/4} = \left(\frac{ZQ_0}{A}\right)^{1/4} = \left(\left(\frac{r_{hf}}{r_p}\right)^{\gamma} \frac{Q_0}{A}\right)^{1/4}$$

Q_p Values + DM Particle Mass

- Max/Min Q₀ ratio is ~ 41
- Max/Min Q_p differ by < 4%
- Max/Min m differ by < 1%

Including all galaxy data uncertainties

- 30 < Z < 3000
- 2.2 < m/keV < 4.2

warf	$Mean~\mathbf{Q}_{0}$	Mean Q _p	Mean Z	m (keV)
arina	3.48E-04	0.042	120	3.024
raco	3.98E-04	0.040	101	2.996
ornax	2.62E-05	0.041	1555	3.005
eo I	2.44E-04	0.041	168	3.009
eo II	9.04E-04	0.041	45	3.003
culptor	2.18E-04	0.041	190	3.018
extans	3.85E-05	0.041	1069	3.013
Minor	1.87E-04	0.042	224	3.024
Ven I	5.70E-05	0.041	717	3.006
Ma II	1.06E-03	0.041	38	3.006
IAX/MIN	40.6	1.038	40.6	1.009

Results

- Mean thermal relic DM particle mass: 3.0 keV.
- Range of 2.2 4.2 keV with all dwarf galaxy measurement uncertainties accounted for (i.e., full range of $r_p = 18.5 30.5$ pc).
- Appealing to the Quasar Luminosity Function, Song and Lee [4] found 0.3 < m/keV < 3.0.
- Combining the results: 2.2 < m/keV < 3.0

Non-thermal DM

 If the DM particle is a sterile neutrino, we can use the following transformation equations [5] to find the corresponding non-thermal limits:

$$m_{\nu}^{\text{DW}} = 4.4 \text{keV} \left(\frac{m_{\text{Thermal}}}{\text{keV}}\right)^{4/3} \cong 1.5 m_{\nu}^{\text{SF}} \cong 4.5 m_{\nu}^{\nu\text{MSM}}$$

- Applying these transformations, we find:
 - **12.6** < m/keV < **19.1** for a DW Sterile Neutrino. **X**[6]
 - **8.4** < m/keV < **12.7** for a Shi-Fuller Sterile Neutrino.
 - **2.8** < m/keV < **4.2** for a vMSM Sterile Neutrino.

Summary III and Conclusion

- Using data from Walker et. al. [3], we found a relationship between Q and r_{hf} of Milky Way dwarf satellite galaxies.
- We separated the dwarf galaxies into low and high σ groups, which enabled us to find the primordial radial scale r_p and the corresponding empirical Z factors for each group.
- With these Z factors, we were able to calculate Q_p and determine the mass of the dark matter particle for several theoretical models, including thermal relics [1] and sterile neutrinos [5].

Sources

- [1] Hogan, C. J. & Dalcanton, J. J. 2000, arXiv:astroph/0002330
- [2] de Vega, H. J. & Sanchez, N. G. 2010, arXiv: 0901.0922
- [3] Walker, M.G., Mateo, M., Olszewski, E. W., Peñarrubia, J., Evans, N. W., & Gilmore, G. 2009, arXiv:0906.0341
- [4] Song, H. & Lee, J. 2009, arXiv:0903.5095
- [5] Viel, M., Lesgourgues, J., Haehnelt, M. G., Matarrese, S., & Riotto, A. 2005, arXiv:astro-ph/0501562
- [6] Watson, C., Li, Z., & Polley, N., 2012, arXiv:1111.4217

Issues with Current Detectors II

Current Targets of Opportunity: Dark Matter Filaments between Merging Galaxies M81 M82**D** ~ 46 kpc **NGC 3077 M81 M82**

M81/M82 System **Excellent Laboratory** for Examining **DM Filaments**

- Nearby (3.6 Mpc)
- **Small Separation**
- **Starburst Activity** shows evidence of close pass 0.2-0.3 Gyrs de Mello et al. (2007)
- Radio Observations **Reveal Extensive Network of Neutral Hydrogen Filaments** Chynoweth et al. (2008)

Simulated Dynamics & Filament Formation II:

Proposed Chandra Observations:

At D ~ 3.6 Mpc, 1' <u>~</u> 1 kpc

SO

Only 1 *Chandra* ACIS-I Pointing needed to cover the space between M81 & M82 that should be relatively free of hot gas.

Forecast for Observations & Constraints:

Prospective Data: *Chandra* CXB in a 15' x 15' FoV

 $\frac{M_{Fil} \text{ in FoV:}}{2.5 \text{ x } 10^{10} \text{ M}_{\odot}}$

$$\begin{split} & \Sigma_{\rm FoV} ~(10^{11} {\rm M_{\odot} Mpc^{-2}}) \\ & \Sigma_{\rm fil} \simeq 0.019 \\ & \Sigma_{\rm MW} \simeq 0.009 \\ & ({\rm Low \ mass \ MW \ [76]}) \\ & \Sigma_{\rm tot} \simeq 0.028 \end{split}$$

v_s Signal: Exclusion/Detection at m_s = 2 keV

Kinematic Evidence of Tidally Stripped Mass?

Simulated Dynamics & Filament Formation I:

by Chris Purcell (Univ. of Pittsburgh: PITT PACC)

Initial Conditions: Approach: $M81 = 7x10^{11} M$ (within 200 kpc) $^{\odot}$ $M82 = 1 \times 10^{11} M$ (within 100 kpc)

 $\tau = 0.47$ Gyrs 120 kpc

Pericenter: $\tau = 0.89 \text{ Gyrs}$ **16 kpc**

Final State: $\tau = 1.14 \text{ Gyrs}$ $\Delta \tau \sim 0.25 \text{ Gyr}$ since pericenter as in de Mello et al. (2007) $M81 \simeq 5 \times 10^{11} M$ as in Schroder et al. (2001) $M82 = 10^{10} M$ as in Greco et al. (2012) **36 kpc**

 $\mathbf{D}_{\text{separation}} = 200 \text{ kpc}$

Infall vel. = 100 km/s

Sofue (1998)