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Cosmic Background Radiation — cosmological parameters
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Basic idea for how galaxies form

1. Small mass fluctuations (such
as those revealed by the all-sky
map, shown at left, obtained by
the COBE satellite) are relics of
the Big Bang. These are the
"seeds" of galaxy formation.

2. Invisible dark matter halos (shown in brown
below) collapse from the ambient background, 3. Primordial gas condenses within the
tracing the initial mass fluctuations. dark matter halos. Some stars form during
the collapse, and collect into globular
clusters. Most of the gas collects into
disks (shown in yellow).

Dark Matter Halo

4. Stars form in the disk, gradually
building up a spiral galaxy.

Colliding spiral galaxies

Globular clusters

5. A collision of two (or more) disks
produces an elliptical galaxy.
The globular clusters from the
" - disks are preserved in the

transformation.

Elliptical galaxy




End product of galaxy formation highly regulated and
dependent on stellar mass for reasons that are not understood
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Star formation rate integrated density — factor of > 10 variation
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The formation of stellar mass — direct measures
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Observed integrated stellar mass density vs. redshift




z < 1 massive
Galaxies in UDF




z > 1 massive
Galaxies in UDF

More peculiar, bluer,
higher SF, higher sSFR,
and smaller size




A first attempt to solve this problem 1s with massive galaxies

Mortlock, CJC, et al. (2014)

Most massive galaxies are formed by z =1




Traditional way 1s to examine the change in the stellar mass function
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® declines with time, o goes up (?) and M* 1s roughly constant




Can now measure mass functions up to z~7
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Stellar Mass - log,,(M ) Stellar Mass - log,,(M )

Power-law form at z ~7? Closer to dark matter mass function?

Also, faint end slope a is very step, near o =-2 at z> 6

Duncan, CC, et al. 2014




Galaxies at z = 2.5 --- different from nearby massive galaxies
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Galaxies at z = 2.5 --- different from nearby massive galaxies

M, > 5 x 10" M. M, =1 x 10" M,
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n > 2 Systems

Massive Galaxies atz> 1.5

Mixture of morphologies




Massive galaxies become more disk like at higher redshifts
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CANDELS survey imaging — Hubble Sequence at z> 1

The CANDELS Survey — 900+ Hubble orbits to study high
the resolution NIR Universe in five fields. Gives rest-frame
optical structures for galaxies at z=1-3




ID = 9163

z, =1221

log M. = 11.20

D = 12275

log M. = 11.19

ID = 12555

2z, = 2.156

log M, = 10.64.

log M. =11.12

ID = 11420

z,=1.384

toa . = 10

2, = 2.000

log M. = 11.16

D =2114

.
log M, = 10.28

morphologies in CANDELS

ID = 2998

1651

log M. = 10.31

log M

= 11.00

z, = 1.299

Type =0

Type =0

log M, =10.71

ID = 14716

Type = 0

log M, = 10.27

Type=1

Type

1D = 1509

Type =1

log M, =11.12

Type =2

=1.220

log M. = 10.53

Type =2

ID = 12535

»

log M, = 10.90

1D = 10976

Type =0

log M, = 10.17

ID = 13056

Type=0

log M, = 10.54

ID = 10453

, = 1.023

log M. = 10.68

log M_=10.15

1D = 5908

Type =1

[LEFELTT

logM_=10.79

ID = 13750

Type =2

log M. = 10.65

log M

=10.20

z,=1.042

Type =0

log M, = 11.04

1D = 8366

Type=0

log M, = 10.52

ID = 11804

Type=0

log M. = 10.58

ID = 6304

Type=1

log M. = 10.91

1D = 6147

z,=1.494

Type

log M. = 10.38

D = 13472

z,=2.348

log M, = 10.36

ID = 11595 Type =2

log M, = 10.60

ID = 12285

Type=2

log M, = 10.47

ID = 1378

Type=2

1D = 4201

Type =0

log M. = 10.17

D = 11115

Type=0

.
-

log M, = 11.04

ID = 11875

Type=0

log M, = 11.22

ID = 1263

Type=1

log M, = 10.20

ID=116

Type =

log M

1D = 10630

Type =1

logM, =

Type =2

log M. = 10.02

ID = 7578

Type

-

log M, = 10.74

ID = 13607

Type =0

log M. = 10.13

1D = 1490

z,=1.343

Type=0

log M, = 10.08

D =7173

2z, =2.320

Type=0

log M. = 11.47

ID = 5987

z, = 1.002

Type=1

log M, = 10.17

ID = 10828

log M. = 10.55

ortlock et al. (2013); Hilton et al. (2013)

1D = 8017

Type =1

log M. = 10.29

ID = 13830 Type =2

log M. = 10.03

ID = 10130

Type=2

log M, = 10.03




There 1s a dependence on stellar mass on morphological evolution

I log M,>10.5 — corrected| 10.25<log M,<10.5 log M,<10.25 Spheroidal types a
L - I - L Disky types =

Peculiar types ® ||

Fraction

More massive systems become ‘Hubble-types’ before lower masses

Ztrans ~ 1 85




Rate of change 1n the formation of Hubble types

Spheroidal types

Disky types

Peculiar types
Total - -
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Do mergers form galaxies?

UDF+HDF
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Evolves as (1+z)"3toz=1.5 Conselice et al. (2009)




Number of Major Mergers

The number of mergers an average
massive galaxy will undergo from z = 3
to z = 0 can be calculated via:

] 2 { 1z
.\Tm — / l : dl - / 1 p - ( \
J.. 1'(z) J., U(z) (1+z) E(z)

“1

For our best fit for ['(z), integrating over
the redshift range of our galaxies we
obtained:

N=1.7+/-0.5
(Major mergers / Galaxy)

Roughly doubles the stellar masses of galaxies from z=0 to 3




Role of minor mergers

More minor mergers add about
the same mass as major
mergers

Total mass added from

"23<z <30 all mergers from 1<z<3
Al71<z<23

+ 6H, 4, magnitude

Bluck, Conselice et al. (2011)
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The star formation rates as a function of stellar mass
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Ownsworth et al. 2014




Do we have a consensus about how massive galaxies
format 1.5 <z <3?

M., (t) = M, (0) + M, m(t)+ < ¥ > 6t Stellar mass evolution

Mg (t) = Mg(0) + Mg m(t) + Mga(t)— < ¥ > 0t IEECETBIERRRAZI BTN

Amount of
gas accreted

Integrate: Mass added from SF ~ Mass added from major merging
However - gas mass fraction for log M > 11 1s less than 0.2

— [ Vidence for cold gas accretion?




The amount of gas added from accretion (or very minor mergers)

(1.18 £0.21) x M,(0) N < >0t Mgwm(t)

M. M. M.

RO ey Over 1.5 <z <3 (2.16 Gyr)

CEEIRIDSORBIN  Average amount of gas accreted

: : dMg,a(t :
Results 1n accretion rate of (gi’:( ) = Mg A = (834 36) Mg yr*




Gas accretion rate history for massive systems
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Can now determine relative contributions to
massive galaxy formation from z =3
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Abundance matching of galaxies and halos
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Suggests a peak in the ‘efficiency’ of galaxy formation (Behroozi et al. 2013)




Observations suggest this peak does not evolve significantly
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Galaxy formation models in Lambda CDM
Traditional method: Make a model to predict or match observations
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T'here are too many distant massive galaxies in . CDM

Millennium simulation
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Vast under prediction in models compared to observations

Galaxy formation appears to be ‘top-down’at small scales —
Directly opposite to CDM predictions of ‘bottom-up’
e.g., Conselice et al. (2007)




Different ACDM model predictions of the merger rate
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While merger history 1s not predicted well by CDM
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Warm dark matter at ~1 keV fits much better




merger fraction

merger fraction

Also, too many minor mergers in LCDM
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Better agreement between dark matter halo mergers

Best fitting
model 1s
standard
cosmology
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Issue(s) with baryonic physics driving stellar mass formation or
cosmological assumptions?




Can we use mergers to measure cosmological parameters?

Best fit value currently gives
Q, =0.84"5%

With available data — not currently
competitive with measurements
from standard methods giving error
1/10t™ of these errors (e.g. Planck)
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Conselice et al. (2014), arX1v:1407.3811




Some variation with @ however, very small differences

log M, > 11 7 ] I log M, > 12

Merger Fraction
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2.5 . 2 2.5
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Need a survey of > 10 deg? with accurate mergers
to z=3 to use as a test of cosmology




Can probe 1n future with large and
deep imaging/spectroscopic surveys
such as Euclid and LSST 1n 2018-2020

Simulated Euclid data

Survey of 15,000 deg? with 40 deg? in deep fields




Summary

Deep observations needed to study galaxies at z> 2 to connect
with galaxies at z < 1.5 and to use as a cosmological probe — can in
principle give unique cosmological information and dark matter info.

Examination of the major merger history shows mergers are an
important, but not the only process of galaxy formation, even for
the most massive systems.

Minor mergers are about as equally as important as major mergers in
forming massive galaxies from 1 <z < 3, but not as much as CDM
predicts.

Gas accretion from the intergalactic medium can account for roughly
half of the baryonic formation of massive galaxies. We are now getting
roughly a complete census of massive galaxy formation at z < 3.

Models still need work to explain evolution and abundances of galaxies
in LCDM — neither or which fit current simulations. WDM appears to
do better.




