Beyond the Power Spectrum: The Primordial Inflation Explorer (PIXIE)

Al Kogut Goddard Space Flight Center

Cosmology at the Dawn of the Chalonge School

More Questions Than Answers (or data!)

- CMB spectrum: Blackbody (maybe)
- CMB anisotropy: A moving target?
- Large Scale Structure: Open universe?
- Rotation Curves: Dark matter?

CMB and Precision Cosmology

The End of Cosmology?

CMB: Backlight for the Universe

A Sampler of CMB Signals

Planck-only ACDM Parameters

	Planck (CMB+lensing)	
Parameter	Best fit	68 % limits
$\Omega_{\rm b}h^2$	0.022242	0.02217 ± 0.00033
$\Omega_{\rm c}h^2$	0.11805	0.1186 ± 0.0031
100 <i>θ</i> _{MC}	1.04150	1.04141 ± 0.00067
τ	0.0949	0.089 ± 0.032
n _s	0.9675	0.9635 ± 0.0094
$\ln(10^{10}A_{\rm s})$	3.098	3.085 ± 0.057
Ω _Λ	0.6964	0.693 ± 0.019
σ_8	0.8285	0.823 ± 0.018
Z _{re}	11.45	$10.8^{+3.1}_{-2.5}$
H_0	68.14	67.9 ± 1.5
Age/Gyr	13.784	13.796 ± 0.058
100 <i>0</i> *	1.04164	1.04156 ± 0.00066
<i>r</i> _{drag}	147.74	147.70 ± 0.63
$r_{\rm drag}/D_{\rm V}(0.57)$	0.07207	0.0719 ± 0.0011

Inflation and CMB Polarization

Polarization Status 2014

Parameter r = ratio of tensor (B-mode) to scalar (unpolarized) power

Possible contribution from Galactic dust foreground?

Polarized Foregrounds

Separate CMB from foreground emission

- Multiple frequency channels
- High sensitivity
- Control instrumental signature

Primordial Inflation Explorer

Name	Role	Institution
A. Kogut	PI	GSFC
D. Fixsen	IS	UMD
D. Chuss	Co-l	GSFC
J. Dotson	Co-l	ARC
E. Dwek	Co-I	GSFC
M. Halpern	Co-I	UBC
G. Hinshaw	Co-I	UBC
S. Meyer	Co-l	U. Chicago
H. Moseley	Co-l	GSFC
M. Seiffert	Co-l	JPL
D. Spergel	Co-I	Princeton
E. Wollack	Co-I	GSFC

Characterize B-Mode Power Spectrum (and More!)

Optical Design for CMB

Conventional Focal Plane

Single-Moded Pixel

Optical Design for CMB

Conventional Focal Plane

Photon Limit: Add Detectors

Optical Design for CMB

Problem: Getting enough sensitivity in enough frequency bands requires ~10,000 background-limited detectors!

PIXIE Optical Solution

PIXIE Optical Solution

PIXIE Nulling Polarimeter

Measured Fringes Sample Frequency Spectrum of Polarized Sky

Instrument and Observatory

Solving the Foreground Puzzle

MASA - GSEC - BATS

Phase delay L sets channel width $\Delta v = c/L = 15 \text{ GHz}$ Number of samples sets frequency range $v_i = 15, 30, 45, \dots (N/2)^* \Delta v$

Example: 24 samples during fringe sweep 12 channels 15 GHz to 180 GHz

But why stop there?

Solving the Foreground Puzzle

Phase delay L sets channel width $\Delta v = c/L = 15 \text{ GHz}$ Number of samples sets frequency range $v_i = 15, 30, 45, \dots (N/2)^* \Delta v$

Sample more often: Get more frequency channels!

PIXIE "Foreground Machine"

PX112

The Problem With Foregrounds

What if the universe uses a different model than the one you're fitting?

With seven free parameters, you can fit a charging rhino.

Parametric Dust Models A Cautionary Tale

Empirical fits show correlation between T and β Greybody model, pixel-to-pixel variation

Liang et al. 2012, arXiv:1201.0060

Solid-state model of disordered medium Two-level system predicts variation in β

- Steeper β for colder T at fixed frequency
- Flatter β for lower freq at fixed temperature

Meny et al. 2007, A&A, 468, 171 Paradis et al. 2011, A&A, 534, A118 Paradis et al. 2012, A&A, 537, A113

Is either model the correct description? How can we tell?

A Tale Of Two Models

Input Sky: CMB + Dust (either greybody or two-level system) + noise 9 EPIC Channels (30, 45, 70, 100, 150, 220, 340, 500, 850 GHz)

Fit 8 parameters to 18 maps assuming dust follows greybody spectrum

- CMB amplitude (Q and U)
- Cold dust amplitude (Q and U) and spectral index
- Warm dust amplitude (Q and U) and spectral index

Compare Output to Input CMB Maps

Same χ^2 But Different C₁: Worst-Case Scenario!

PIXIE vs Dust Models

400 frequency channels from 30 GHz to 6 THz

- Distinguish FDS from TLS emission model
- Determine correct parametric model
- Use THz data to inform low-freq CMB fit

Get channels almost for free

- Longest mirror stroke sets channel width
- Sampling rate sets number of channels
- No messy focal plane allocations

PIXIE Polarization Goals

Measure Inflationary Signal to Limits of Astrophysical Foregrounds

Blackbody Calibrator Adds Spectrum Science

Flip sign: Hot vs cold calibrator

Calibrator blocks "A" beam: Fringes measure ΔI + [Q,U]

 $S(\nu)_{Lx} = 1/4 [I(\nu)_{sky} - I(\nu)_{cal} + Q(\nu)_{sky} \cos 2\gamma + U(\nu)_{sky} \sin 2\gamma]$ $S(\nu)_{Ly} = 1/4 [I(\nu)_{sky} - I(\nu)_{cal} - Q(\nu)_{sky} \cos 2\gamma - U(\nu)_{sky} \sin 2\gamma]$ $S(\nu)_{Rx} = 1/4 [I(\nu)_{cal} - I(\nu)_{sky} + Q(\nu)_{sky} \cos 2\gamma + U(\nu)_{sky} \sin 2\gamma]$ $S(\nu)_{Ly} = 1/4 [I(\nu)_{cal} - I(\nu)_{sky} - Q(\nu)_{sky} \cos 2\gamma - U(\nu)_{sky} \sin 2\gamma]$

Calibrator stowed: Fringes measure [Q,U] only

$S(u)_{Lx}$	=	$1/2 \left[+Q(\nu)_{\rm sky} \cos 2\gamma + U(\nu)_{\rm sky} \sin 2\gamma \right]$
$S(\nu)_{Ly}$	=	$1/2 \left[-Q(\nu)_{\rm sky}\cos 2\gamma - U(\nu)_{\rm sky}\sin 2\gamma\right]$
$S(\nu)_{Rx}$	=	$1/2 \left[+Q(\nu)_{\rm sky} \cos 2\gamma + U(\nu)_{\rm sky} \sin 2\gamma \right]$
$\alpha(\cdot)$		

 $S(\nu)_{Ly} = 1/2 \left[-Q(\nu)_{\text{sky}} \cos 2\gamma - U(\nu)_{\text{sky}} \sin 2\gamma \right]$

Calibrator blocks "B" beam: Fringes measure -ΔI - [Q,U]

 $\begin{aligned} S(\nu)_{Lx} &= 1/4 [I(\nu)_{cal} - I(\nu)_{sky} + Q(\nu)_{sky} \cos 2\gamma + U(\nu)_{sky} \sin 2\gamma] \\ S(\nu)_{Ly} &= 1/4 [I(\nu)_{cal} - I(\nu)_{sky} - Q(\nu)_{sky} \cos 2\gamma - U(\nu)_{sky} \sin 2\gamma] \\ S(\nu)_{Rx} &= 1/4 [I(\nu)_{sky} - I(\nu)_{cal} + Q(\nu)_{sky} \cos 2\gamma + U(\nu)_{sky} \sin 2\gamma] \\ S(\nu)_{Ly} &= 1/4 [I(\nu)_{sky} - I(\nu)_{cal} - Q(\nu)_{sky} \cos 2\gamma - U(\nu)_{sky} \sin 2\gamma] \end{aligned}$

Partially-assembled blackbody calibrator

Flip sign: A vs B beam

Blackbody Spectral Distortion! 1000 Times More Sensitive Than COBE/FIRAS

Blackbody Spectrum

COBE: Sky is blackbody within 50 ppm

PIXIE: Improve COBE limits by factor 1000. Sky can not be black at this level!

Spectral Distortion from Energy Release

Log I

Optically thin case: Compton y distortion

$$I(\nu,T) = \frac{2h\nu^3}{c^2} \frac{1}{\exp(x) - 1} \left[1 + \frac{yx \exp(x)}{\exp(x) - 1} \left(\frac{x}{\tanh(x/2)} - 4 \right) \right]$$
$$y = \int \frac{kT_e}{mc^2} nc\sigma_T dt$$

Optically thick case: Chemical potential distortion

Distortion to blackbody spectrum proportional to integrated energy release

PIXIE: Testing The Standard Model

* Specifically called out in Astro-2010 Decadal Survey

Spectral Distortions: Inflation

Silk damping of primordial perturbations

- Scalar index n_s and running dln n_s /dln k
- Physical scale ~1 kpc (1M $_{\odot}$)

Daly 1991 Hu, Scott, & Silk 1994 Chluba, Erickcek, & Ben-Dayan 2012

Beyond the Power Spectrum

Sunyaev & Khatri 2013

Spectral Distortions: Dark Matter Annihilation

McDonald et al 2001 de Vega & Sanchez 2010

Wavenumber (cm⁻¹)

Spectral Distortions: Dark Matter Decay

Spectral Distortions: Reionization

- T_e probes ionizing spectrum
- Distinguish Pop III, Pop II, AGN

Determine nature of first luminous objects

Spectrum: y distortion ~ Electron pressure $\int nkT_{e}$

• PIXIE limit $y < 5 \times 10^{-9}$

• Distortion must be present at $y \sim 10^{-7}$

Polarization: Optical depth ~ Electron density n

Same scattering for both signals

Spectral Distortions: Recombination

Baseline PIXIE mission: 20 detection of modified spectrum

Cosmic Infrared Background

PIXIE noise is down here!

Knox et al. 2001 Fixsen & Kashlinsky 2011

Spectral Line Emission

Extremely Rich Data Set!

Unique Science Capability

Planck Radiation Law

Direct measurements limited to few percent precision Last serious efforts date to late 1920's

Sample Distortions from Planck Law

U(1) Spontaneous symmetry breaking $I(\nu,T) = B(\nu,T) \left(1 - G(T,\nu)\right)$ Limit G < 9 x 10⁻⁶

Single-loop quantum gravity $I(\nu,T) = B(\nu,T) (1 + \kappa(T)x^2)$ Limit $\kappa < 6 \ge 10^{-9}$

Precision Test of Planck Law

Interesting science at 10⁻⁶ level U(1) spontaneous symmetry breaking CPT violation, quantum gravity Photon mass / chemical potential

New measurement of Boltzmann constant

PIXIE FTS with two blackbody calibrators

S/N ratio > 10^6 per bin in 1 hour

Limiting factor is systematics 10⁻⁵ precision from lab measurement 10⁻⁷ precision with Galactic CO calibration

A Non-Cosmological Problem

Will a future Congress fund a \$1B Inflation Probe? Low-cost alternative within existing NASA budget line

NASA Explorer Program

Small PI-led missions

- 22 full missions proposed Feb 2011
- \$200M Cost Cap + launch vehicle

PIXIE not selected; urged to re-propose

- Category I Science rating
- Broad recognition of science appeal

Re-propose to next MIDEX AO (2017)

- Technology is mature
- Launch early next decade

"PIXIE's spectral measurements alone justify the program"

-- NASA review panel

