X-ray and Phase Space Density Constraints on the Properties of the Dark Matter Particle

Casey R. Watson Millikin University July 23, 2014

Many Thanks to

My Collaborators:

Peter Biermann (MPI, Univ. of Bonn, Univ of AL), Zhiyuan Li (CfA/UCLA) & Joe Cheeney, Chris Pelikan, Nick Polley, Leon Yu (Millikin)

and

Norma and Hector for inviting me.

OUTLINE

- Properties of Sterile Neutrinos
- Models of Sterile Neutrino Interactions & Production
- X-ray Constraints from Previous Studies
 - CXB
 - Galaxy Clusters
 - Dwarf Galaxies
- The Advantages of Andromeda
- Constraints from XMM Observations of Andromeda
- Constraints from *Chandra* Observations of Andromeda
- The Bulbul et al. (2014) Anomaly in Context
 - vs. X-ray Constraints
 - vs. Galaxy Constraints
- Improved Phase Space Density Constraints via MW dSphs
 - Implications for DM Particle mass + Galaxy Formation/Evolution

The Fertile Phenomenology of Sterile Neutrinos

- Non-zero active neutrino masses [1,2]
- Baryon & Lepton Asymmetries [15-20]
- Big Bang Nucleosynthesis [19]
- Evolution of the matter power spectrum [21,22]
- Reionization [23-31]
- Active Neutrino Oscillations [32-33]
- Pulsar Kicks [34-39]
- Supernovae [40-42]
- Excellent Dark Matter Particle Candidate [3-14, 43-57]
- Most Importantly: Readily Testable
 - Can decay into detectable X-ray photons

Detecting Sterile Neutrino Radiative Decays:

"
$$u_s$$
" \rightarrow " u_{lpha} " $+ \gamma$
 $E_{\gamma} = \frac{m_s}{2} \sim 1 \text{ keV}$

 $1 \text{ keV} < m_s < 20 \text{ keV}$ Chandra & XMM can detect the X-ray photons associated with sterile neutrino

radiative decays.

Sterile Neutrino Interactions with SM Particles

(Abazajian, Fuller, Patel 2001 [5]; Abazajian, Fuller, Tucker 2001 [6])

Very small mixing $(\sin^2 2\theta \leq 10^{-7})$ between

mass
$$|v_{1,2}>$$
 &

flavor
$$|v_{\alpha,s}\rangle$$
 states:

$$|\nu_{\alpha}\rangle = \cos\theta |\nu_{1}\rangle + \sin\theta |\nu_{2}\rangle |\nu_{s}\rangle = -\sin\theta |\nu_{1}\rangle + \cos\theta |\nu_{2}\rangle$$

For $m_s < m_e$,

3v Decay Mode Dominates:

$$\Gamma_{3v} \simeq 1.74 \times 10^{-30} s^{-1} \left(\frac{\sin^2 2\theta}{10^{-10}} \right) \left(\frac{m_s}{\text{keV}} \right)^5$$

Radiative Decay Rate is:

$$\Gamma_{\rm s} \simeq 1.36 \times 10^{-32} s^{-1} \left(\frac{\sin^2 2\theta}{10^{-10}} \right) \left(\frac{m_s}{\rm keV} \right)^5 \mathcal{V}_{\rm S} \longrightarrow \mathcal{V}_{\rm C} + \gamma$$

The Sterile Neutrino Radiative Decay Signal:

Radiative Decay Luminosity:

$$L_{x,s} = E_{\gamma,s} N_s^{FOV} \Gamma_s = \frac{m_s}{2} \left(\frac{M_{DM}^{FOV}}{m_s} \right) \Gamma_s$$

$$\simeq 1.2 \times 10^{33} \text{erg } s^{-1} \left(\frac{M_{DM}^{FOV}}{10^{11} M_{\odot}} \right) * \left(\frac{\sin^2 2\theta}{10^{-10}} \right) \left(\frac{m_s}{\text{keV}} \right)^5$$

• Measured Flux: $\Phi_{x,s} = \frac{L_{x,s}}{4\pi D^2}$

$$\Phi_{x,s}(\sin^2 2\theta) \simeq 1 \times 10^{-17} \text{erg cm}^{-2} s^{-1} \left(\frac{D}{\text{Mpc}}\right)^{-2} \times \left(\frac{M_{DM}^{FOV}}{10^{11} M_{\odot}}\right) \left(\frac{\sin^2 2\theta}{10^{-10}}\right) \left(\frac{m_s}{\text{keV}}\right)^5$$

Sterile Neutrino Production:

- Dodelson-Widrow Model [3]
 - Density-Production Relationship [43]:

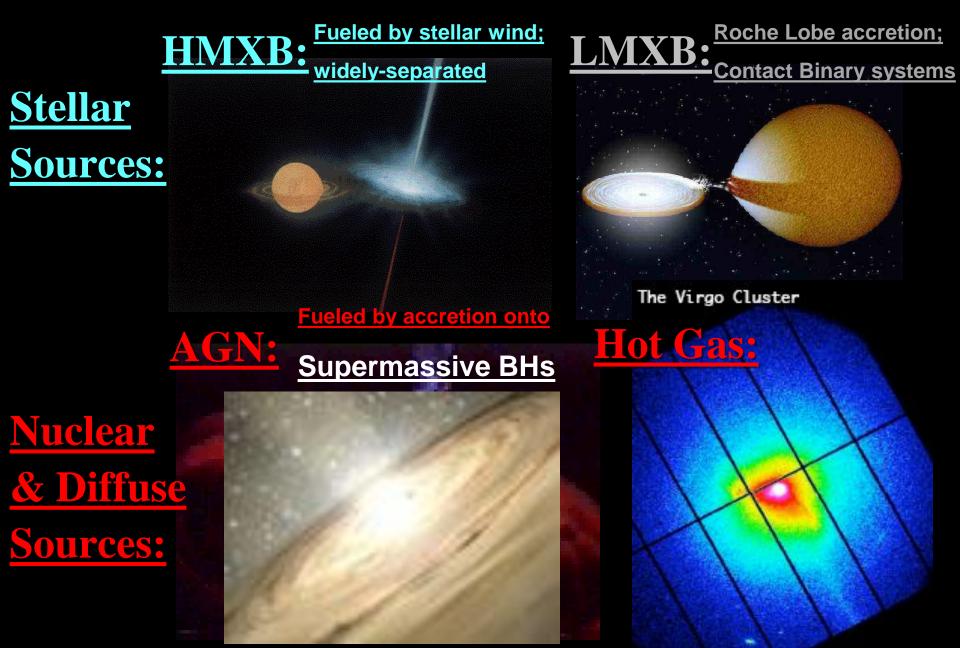
$$m_s = 55.5 \text{ keV} \left(\frac{\sin^2 2\theta}{10^{-10}} \right)^{-0.615} \left(\frac{\Omega_s}{0.24} \right)^{0.5}$$
 (for T_{QCD} ~ 170 MeV)

Mixing Angle-Independent Flux:

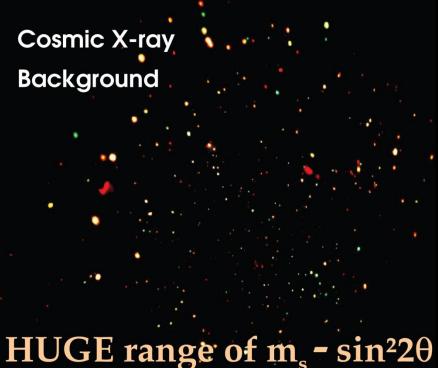
Agrees with Asaka et al. model [48] for

$$1 \text{ keV} \lesssim m_s \lesssim 10 \text{ keV}$$

To maximize the sterile neutrino decay signal:

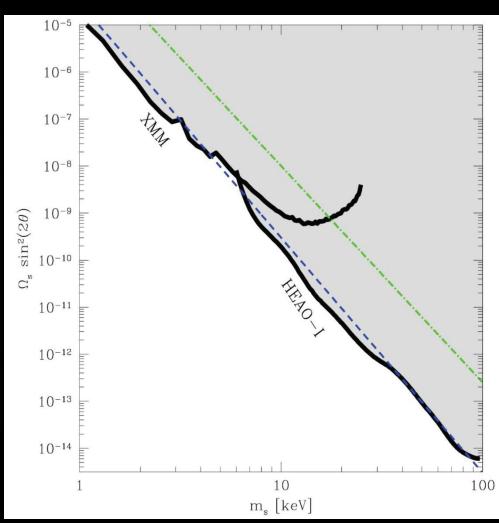

$$\phi_{x,s}(\sin^2 2\theta) \simeq 1.0 \times 10^{-17} \text{erg cm}^{-2} \text{s}^{-1} \left(\frac{D}{\text{Mpc}}\right)^{-2}$$

$$\times \left(\frac{M_{DM}^{FOV}}{10^{11} M_{\odot}}\right) \left(\frac{\sin^2 2\theta}{10^{-10}}\right) \left(\frac{m_s}{\text{keV}}\right)^5$$

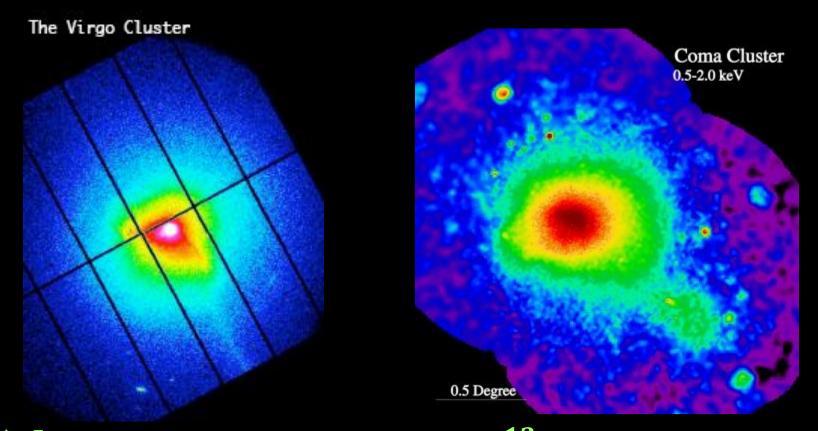

the ideal object to study is:

- nearby: small Distance D,
- massive: large M_{DM} (in FOV),
- quiescent: low astrophysical background.

Astrophysical X-ray Sources:


Previous work I: Cosmic X-ray Background

probed via combined


XMM & HEAO-I Data [61].

Rekindled interest in m_s
X-ray constraints [6].

Constraints: $m_s < 9.3 \text{ keV}$ (for DW Model v_s [3, 43]).

Previous work II: Galaxy Clusters

Advantage: HUGE $M_{DM} \sim 10^{13} M_{\odot}$ PROBLEMS: HUGE background; D > 10 Mpc

Constraints (for DW Model v_s [3, 43]):

 $m_s < 8.2 \text{ keV (Virgo [44])}; m_s < 6.3 \text{ keV (Virgo + Coma [13, 63])}.$

Advantages of Andromeda (M31)

(Watson, Li, Polley 2012, Watson, Beacom, Yuksel, Walker 2006 [66])

Nearby: $D = 0.78 \pm 0.02 \text{ Mpc}$ [102, 103]

LOW astrophysical background (little hot gas &

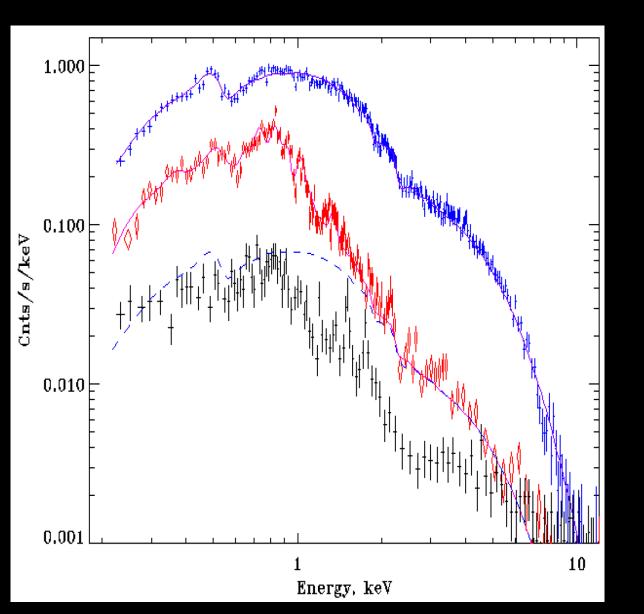
bright point sources can be excised)

Well-measured Dark Matter Distribution

based on analyses of extensive Rotation Curve Data

(Klypin, Zhao, Somerville 2002 [104], Seigar, Barth, & Bullock 2007 [105])

Prospective Sterile Neutrino Signals


Comparable to Massive Clusters without the background

Exceeding Ultra Nearby Dwarf Galaxies

$$\frac{\Phi_{\text{M31}}}{\Phi_{\text{Clus}}} = \left(\frac{M_{\text{M31}}^{FOV}}{M_{\text{Clus}}^{FOV}}\right) \left(\frac{D_{\text{Clus}}}{D_{\text{M31}}}\right)^2 \simeq \frac{\Phi_{\text{M31}}}{\Phi_{\text{Dwarf}}} = \left(\frac{M_{\text{M31}}^{FOV}}{M_{\text{Dwarf}}^{FOV}}\right) \left(\frac{D_{\text{Dwarf}}}{D_{\text{M31}}}\right)^2 \gtrsim 1$$

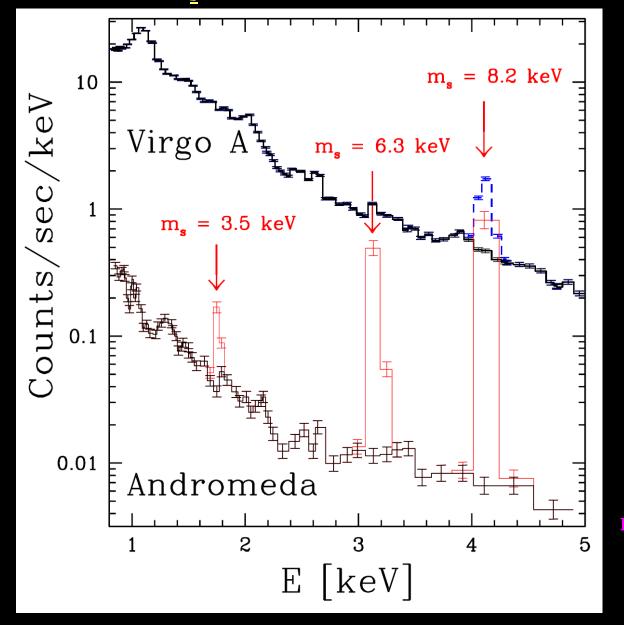
<u>Unresolved 5' XMM Spectrum of Andromeda</u>

(from Shirey et al. 2001 [96])

REDUCED

Astrophysical

Background:


Bright point sources

removed (in Ref. [96])

Intrinsically LOW hot gas emission

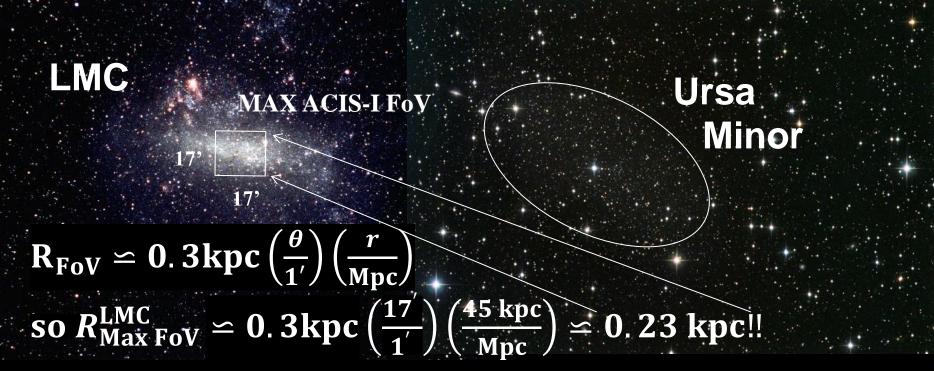
RESULTS

For $\Omega_s = 0.24$ & L = 0 density-production relationship [43]:

Andromeda:

 $m_s < 3.5 \text{ keV}$ [66]

Virgo A:


 $m_s < 8.2 \text{ keV}$ [44]

Virgo A+Coma:

 $m_s < 6.3 \text{ keV}$ [13, 63]

 $m_s = 6.3 \text{ keV } \& m_s = 8.2 \text{ keV}$ decay peaks are also shown relative to Andromeda data.

Previous work III: Dwarf Galaxies

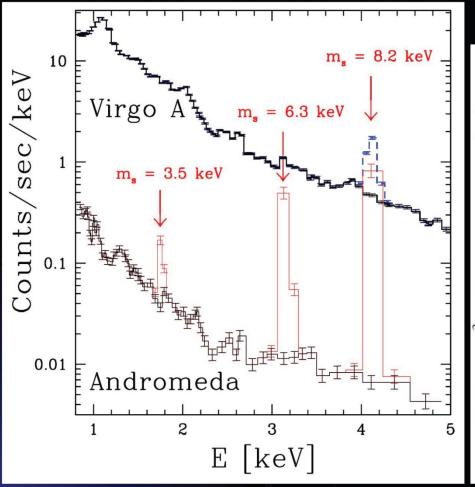
Advantages: Small D; Low background

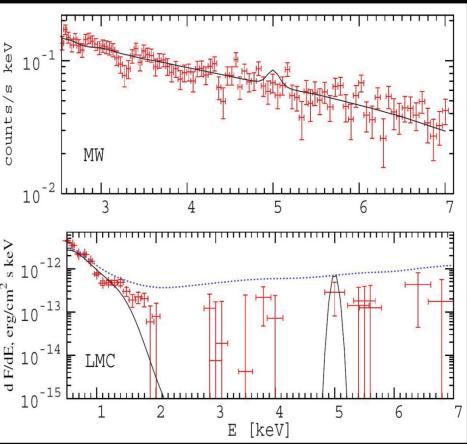
PROBLEMS: Low & Uncertain M_{DM} in FOV.

Constraints (for DW Model v_s [3, 43]):

 $m_s < 3 \text{ keV**} (LMC + MW) [69]$

** VERY WEAK EXCLUSION CRITERION

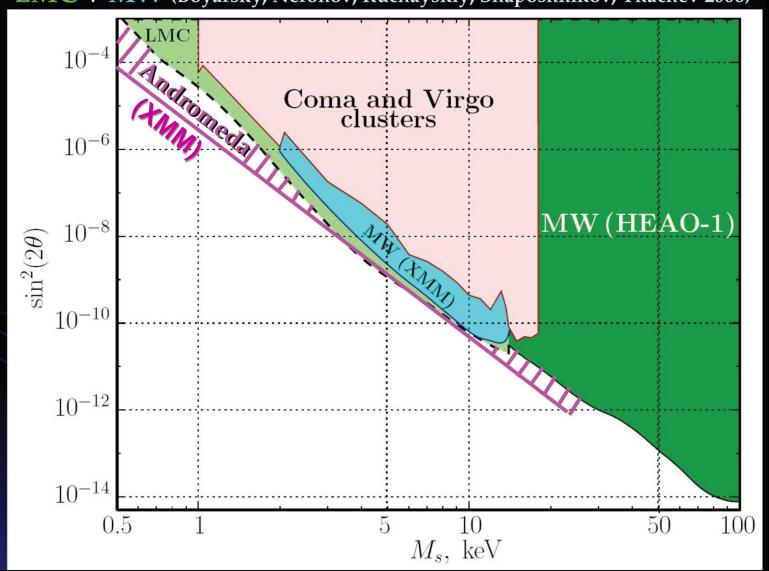

Andromeda (XMM) vs. Dwarf/MW Constraints


Andromeda [66] &

LMC + MW [69]

(Watson, Beacom, Yüksel, Walker 2006)

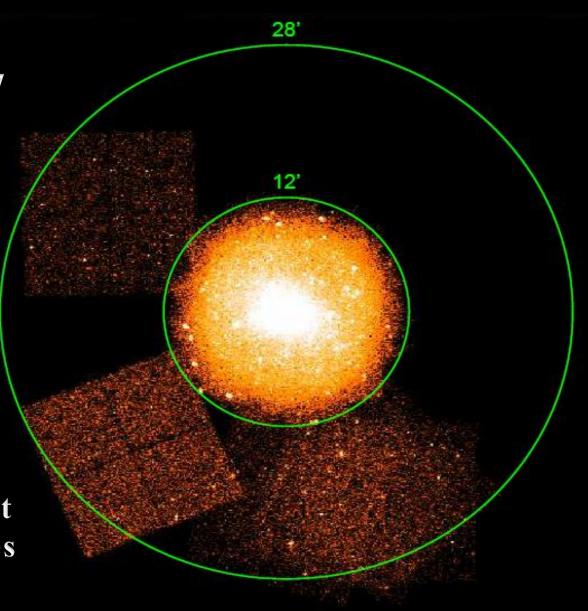
(Boyarsky, Neronov, Ruchayskiy, Shaposhnikov, Tkachev 2006)



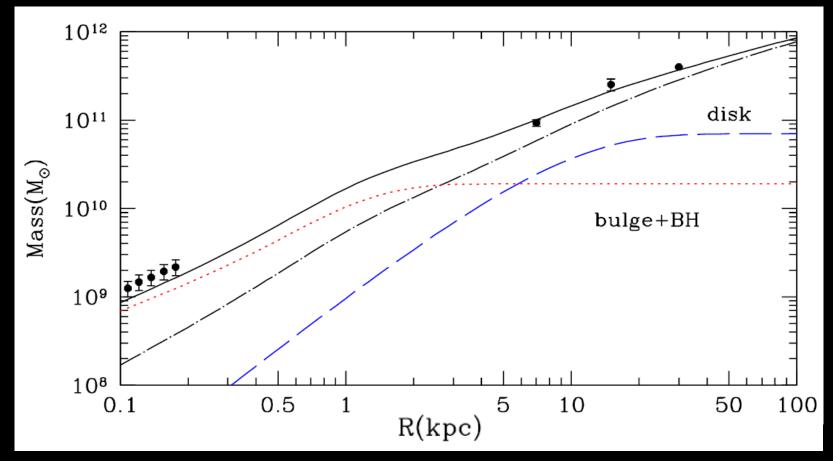
Andromeda (XMM) vs. Cluster/Dwarf/MW

Andromeda (Watson, Beacom, Yüksel, Walker 2006) vs.

LMC + MW (Boyarsky, Neronov, Ruchayskiy, Shaposhnikov, Tkachev 2006)



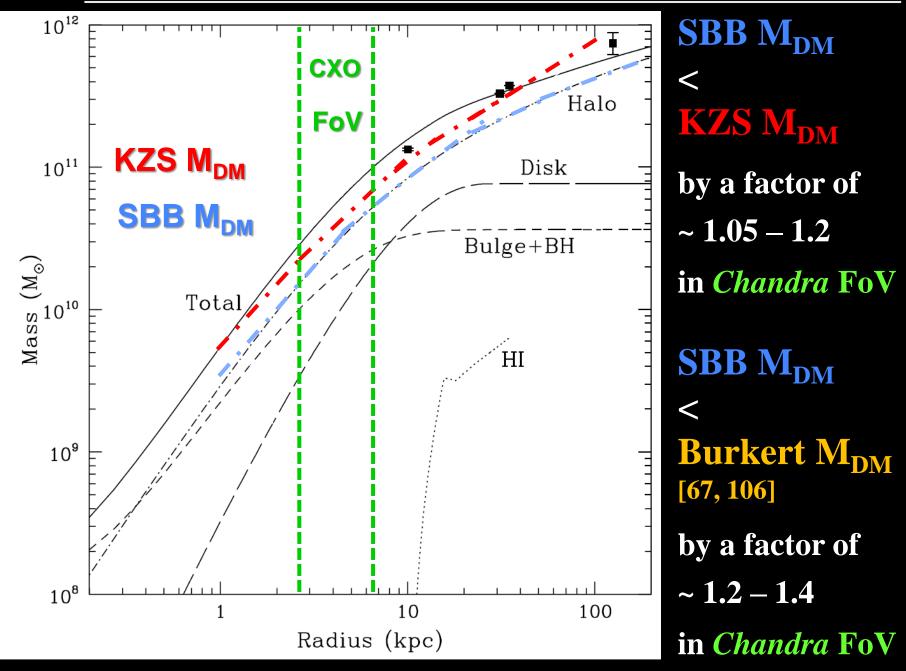
Chandra FOV of M31: $\Delta\theta = 12' - 28'$


Raw counts associated with the 7 Chandra ACIS-I exposure regions.

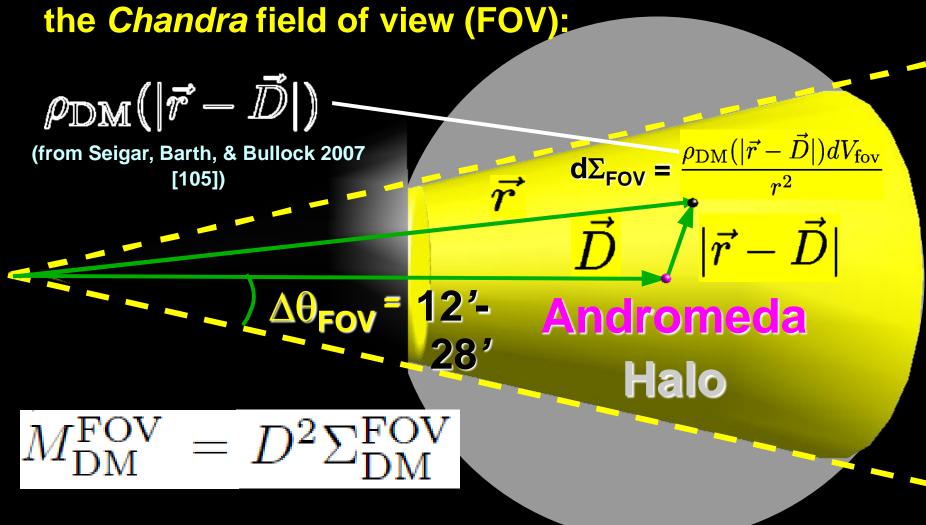
Exposure times range from 5ks to 20ks

•Central 12' is excluded because of high astrophysical background from hot gas and point sources in that region

Andromeda's Well-measured Matter Distribution:



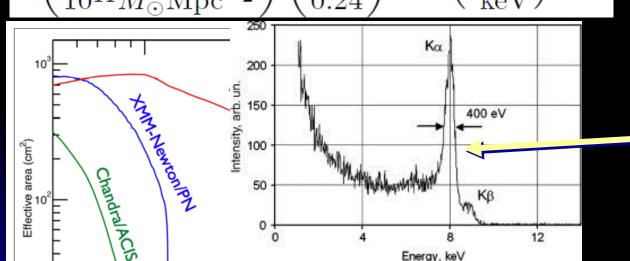
Constraints at small radii are from Stellar Motions in the Nucleus. Three points at R>5 kpc characterize the spread in $v_{rot} = 255 \pm 15$ km/s.


(Klypin, Zhao, Somerville 2002 [104] (KZS))

(Additional Data & updated analysis in Seigar, Barth, & Bullock 2007 [105] (SBB))

More Conservative DM Matter Distribution:

The Fraction of Andromeda's Dark Matter Mass in


$$\Sigma_{\rm DM,M31}^{\rm FOV} \simeq (0.8 \pm 0.04) \times 10^{11} M_{\odot} \rm Mpc^{-2}$$

 $M_{\rm DM,M31}^{\rm FOV} \simeq (0.49 \pm 0.05) \times 10^{11} M_{\odot}$

Conversion of Decay Signal to Detector Units:

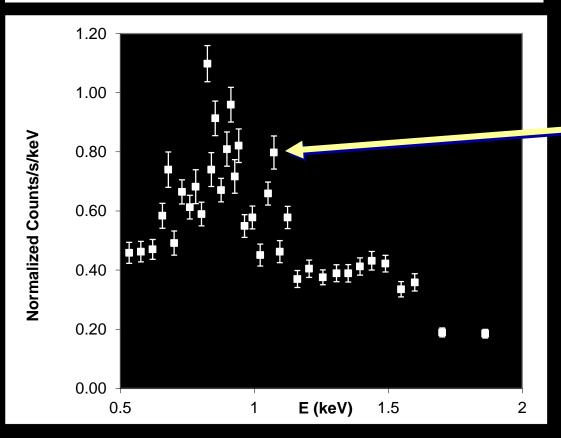
$$\frac{dN_{\gamma,s}}{dE_{\gamma,s}dt}(\Omega_{s}) = \left(\frac{\Phi_{x,s}(\Omega_{s})}{E_{\gamma,s}}\right) \left(\frac{A_{\text{eff}}(E_{\gamma,s})}{\Delta E}\right)$$

$$=6.7 \times 10^{-2} \text{ Counts/sec/keV} \left(\frac{A_{\text{eff}}(E_{\gamma,s})}{100 \text{ cm}^2} \right)$$

$$<$$
 $\left(\frac{\Sigma_{\mathrm{DM}}^{\mathrm{FOV}}}{10^{11} M_{\odot} \mathrm{Mpc^{-2}}}\right) \left(\frac{\Omega_{\mathrm{s}}}{0.24}\right)^{0.813} \left(\frac{m_s}{\mathrm{keV}}\right)^{1.374}$

Energy (keV)

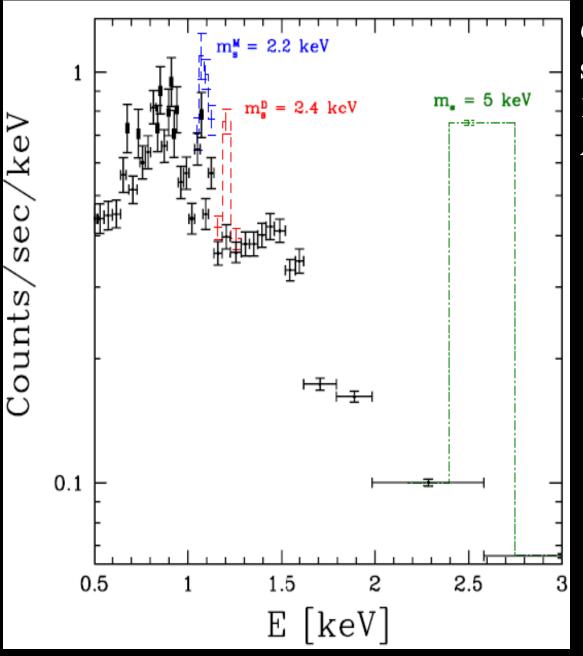
NuSTAR effective area


 $\begin{array}{c} \textbf{Detection of } \nu_s \\ \textbf{Decays at } E_{\gamma,s} \\ \textbf{depends on} \end{array}$

- $\triangleright \Phi_{x,s}$
- Spectral Energy ResolutionΔE ~ E/15
- > ACIS-I Effective
 Area

 $A_{eff}(E_{\gamma,s})$

Detection/Exclusion Criterion:


$$\frac{dN_{\gamma,s}}{dE_{\gamma,s}dt} (\Omega_s) \ge \Delta \mathcal{F}$$

- Sterile Neutrino
 Decay Signal
 dN_{γ,s}/dE_{γ,s}dt
- ≥ Chandra Data__^ ✓ ¾
- in a given bin of energy

 E

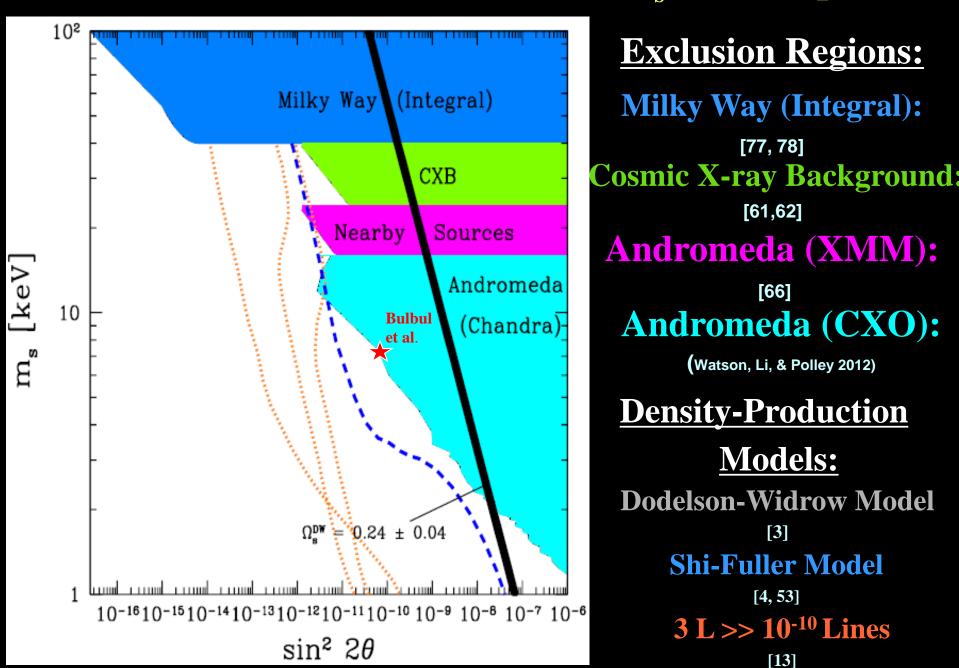
Limits on m_s from *Chandra* Observations of M31

Chandra unresolved X-ray spectrum emitted from 12' - 28' annular region of Andromeda (M31).

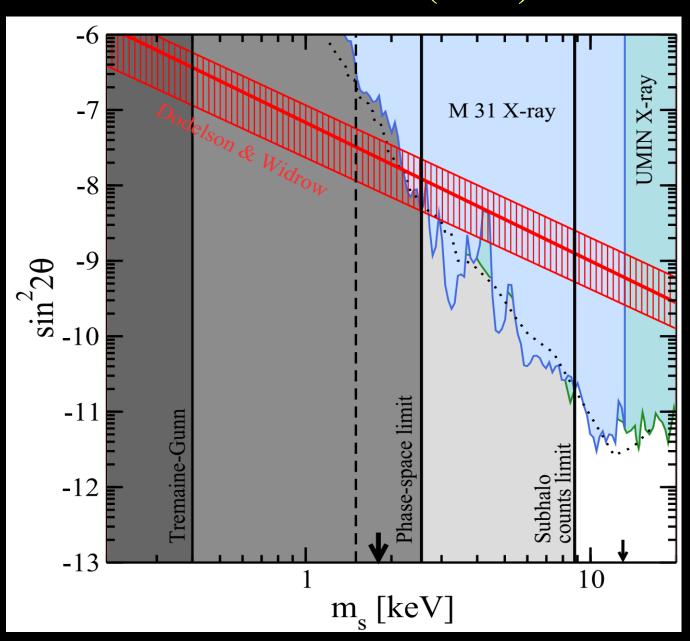
Majorana:

 $m_s < 2.2 \text{ keV}$

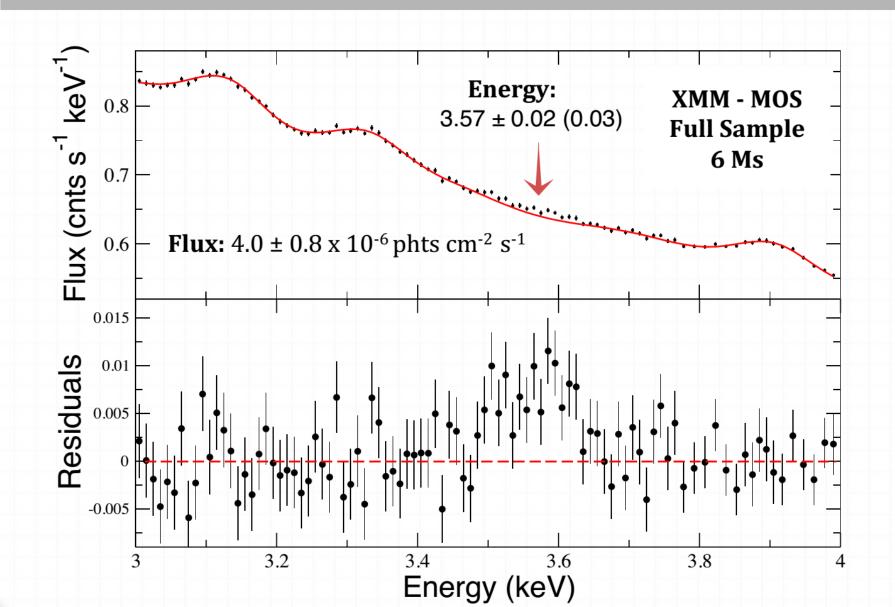
Dirac:

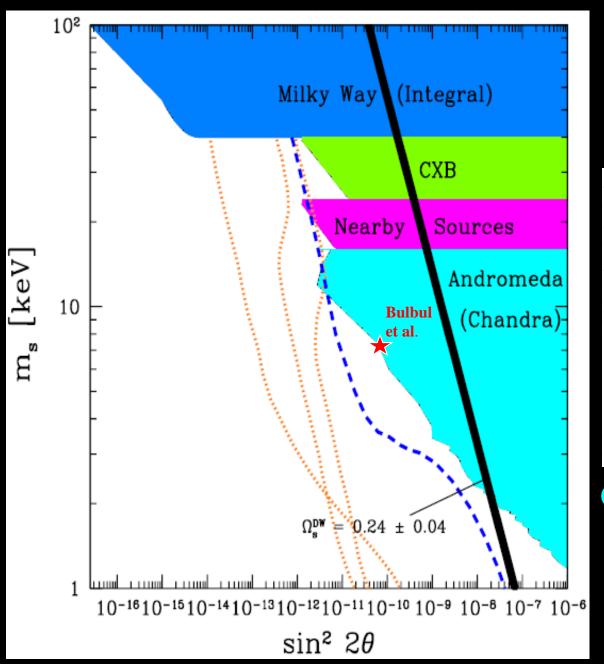

 $m_s < 2.4 \text{ keV}$

Claimed Detection:


$$m_s = 5 \text{ keV}$$

(Loewenstein & Kusenko 2010 [82]) STRONGLY excluded by our data!

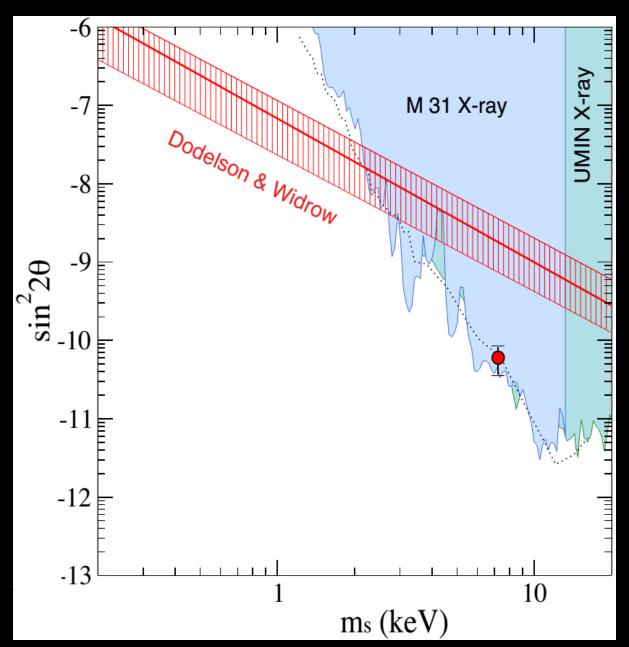

Generalized constraints in the $m_s - \sin^2 2\theta$ plane


Dodelson-Widrow Excluded according to Horiuchi et al. (2014)

Bulbul et al. (2014): Detection of An Unidentified Emission Line

Possible Detection?

Bulbul et al. (2014): $m_s = 7.14 \pm 0.1 \text{ keV}$ $\sin^2 2\theta = 6.7 \pm 2.5 \text{x} 10^{-11}$

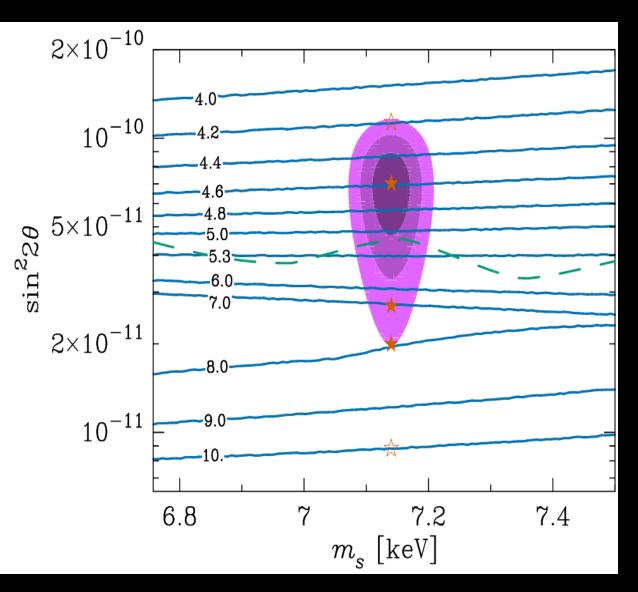

- ★Not a background feature
- Not an instrumental line
- ⋆Not a detector feature
- Not a modeling artifact
- *Comes from all clusters rather than a few dominant bright clusters
- ★Flux is centrally concentrated

On the cusp of exclusion:

Andromeda (CXO)

(Watson, Li, & Polley 2012) (Horiuchi et al. 2014)

Bulbul et al. result avoids exclusion at lowest mixing


Bulbul et al. OK if: $\sin^2 2\theta \sim 3-4 \times 10^{-11}$

Andromeda (CXO) Exclusion Constraints:

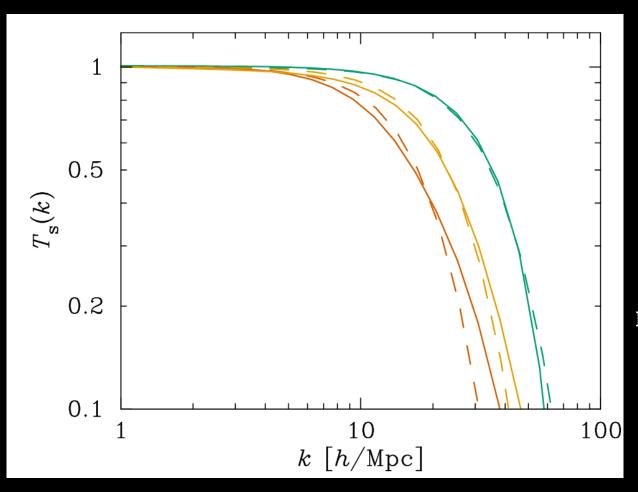
Dotted (Watson, Li, & Polley 2012)

Solid (Horiuchi et al. 2014)

Shi-Fuller Models (Abazajian 2014)

Bulbul et al.:

$$m_s = 7.14 \pm 0.1 \text{ keV}$$
 $\sin^2 2\theta \simeq 6.7 \text{x} 10^{-11}$ corresponds to $L = 4.6 \text{x} 10^{-4}$, i.e., $L_4 = 4.6$


IMPORTANT

Lower mixing: $\sin^2 2\theta \approx 3x10^{-11}$ corresponds to

$$L_4 = 7.0$$

WDM Transfer Functions:

Shi-Fuller vs. Thermal (Abazajian 2014)

<u>Solid</u>

 $L_4 = 8, 7, 4.6$

Dashed

 $m_{th}/keV = 1.6, 2.0, 2.9$

Galaxy Constraints Satisfied by 2 keV Thermal Sterile Neutrino (Abazajian 2014)

- Local Group Phase Space Density and Subhalo Counts: $m_{th} > 1.7 \; keV$ (Horiuchi et al. 2014)
- High Redshift Galaxy Counts: $m_{th} > 1.3 \text{ keV}$ (Schultz et al. 2014)
- Abundance, Radial Distribution, and Inner Density Profile Crises of Milky Way Satellites solved if:

 $m_{th} \simeq 2~keV$ (e.g., Lovell et al. 2012 and Abazajian 2014 for additional references)

• Recall that a 7.14 keV Shi-Fuller v_s with $L_4 = 7$: BEHAVES LIKE $m_{th} \sim 2$ keV!

Summary I

DW excluded via phase space constraints from MW dwarfs.

(Horiuchi, et al. 2014)

$m_s = 7.14 \pm 0.1$ keV detection still viable but close to X-ray exclusion.

(Bulbul, et al. 2014)

A 7.14 keV Shi-Fuller sterile neutrino with $L_4 = 7$:

- Accounts for X-ray line anomaly found by Bulbul et al.
- Satisfies all galaxy constraints like $m_{th} \simeq 2 \text{ keV}$
- Avoids exclusion by Andromeda X-ray Constraints

(Abazajian, et al. 2014)

Phase Space Density Overview I

$$Q \propto \frac{\rho}{\sigma^3}$$

• For a fermionic thermal relic, Hogan & Dalcanton (2001) find:

$$Q_{\rm HD} = \frac{\rho}{(3\sigma^2)^{3/2}} = AQ_* \left(\frac{m}{\rm keV}\right)^4$$

- where $A = 5 \times 10^{-4}$ and $Q_* = \frac{M_{\odot}/pc^3}{({\rm km~s^{-1}})^3}$
- adiabatic invariant
- strongly mass-dependent

Phase Space Density Overview II

- Hogan & Dalcanton's assume a 1-D velocity disperson.
- As in Horiuchi et al. (2014), we assume MB:

$$Q = \frac{\rho}{(2\pi\sigma^2)^{3/2}} \simeq 0.33 Q_{\rm HD}$$

$$Q_P = AQ_* \left(\frac{m}{\text{keV}}\right)^4$$

• where A = 1.65 x 10⁻⁴ and $Q_* = \frac{M_{\odot}/pc^3}{({\rm km~s^{-1}})^3}$

Connecting the Past to the Present

• Galaxy formation processes alter Q by an unknown factor Z:

$$Z = \frac{Q_P}{Q_0}$$

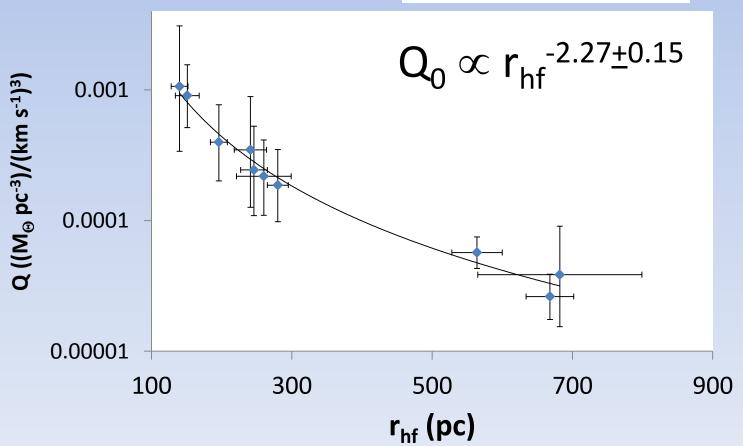
- De Vega & Sanchez (2010) explored a number of analytical methods to find Z, concluding that
 - $-1 \le Z \le 10^4$, in agreement with simulations
 - the mass of a thermal relic DM particle is ~ keV:

$$\frac{m_{\rm th}}{\rm keV} = \left(\frac{Q_p}{A}\right)^{1/4} = \left(\frac{ZQ_0}{A}\right)^{1/4} \simeq 1 - 10$$

Goals of Our Project

- 1. Determine Z directly from the dwarf galaxy data to produce a model-independent mapping between Q_p and Q_0 .
- 2. Use this empirical Z factor to determine the DM particle mass both for thermal and non-thermal relics.
- 3. Identify primordial dwarf galaxies i.e., systems for which $Q_0 \simeq Q_P$.
- 4. Draw insights from these primordial objects about the formation and evolution of galaxies.

Dwarf Galaxy Data (Sample)


• Data for 23 dSphs from Walker et. al. (2009)

	σ			ρ				r _{hf}		M(r _{hf})			
Dwarf	(km/s)			$(M_{\Theta} pc^{-3})$				(pc)			(10 $^7\mathrm{M}_\odot$)		
Carina	6.6	<u>+</u>	1.2	0.1	<u>+</u>	0.04	241	<u>+</u>	23	0.61	<u>+</u>	0.23	
Draco	9.1	<u>+</u>	1.2	0.3	<u>+</u>	0.08	196	<u>+</u>	12	0.94	<u>+</u>	0.25	
Fornax	11.7	<u>+</u>	0.9	0.042	<u>+</u>	0.007	668	<u>+</u>	34	5.3	<u>+</u>	0.9	
Leo I	9.2	<u>+</u>	1.4	0.19	<u>+</u>	0.06	246	<u>+</u>	19	1.2	<u>+</u>	0.4	
Leo II	6.6	<u>+</u>	0.7	0.26	<u>+</u>	0.06	151	<u>+</u>	17	0.38	<u>+</u>	0.09	
Sculptor	9.2	<u>+</u>	1.1	0.17	<u>+</u>	0.05	260	<u>+</u>	39	1.3	<u>+</u>	0.4	
Sextans	7.9	<u>+</u>	1.3	0.019	<u>±</u>	0.007	682	<u>+</u>	117	2.5	<u>+</u>	0.9	
U Minor	9.5	<u>+</u>	1.2	0.16	<u>+</u>	0.04	280	<u>+</u>	15	1.5	<u>+</u>	0.4	
C Ven I	7.6	<u>+</u>	0.4	0.025	<u>+</u>	0.003	564	<u>+</u>	36	1.9	<u>+</u>	0.2	
U Ma II	6.7	<u>+</u>	1.4	0.32	<u>±</u>	0.14	140	<u>+</u>	25	0.36	<u>+</u>	0.16	

Q – r_{hf} Power-Law Relation

• The power-law relations from Walker et al. (2009):

$$ho \propto r_{hf}^{-1.6}; \sigma \propto r_{hf}^{0.2}
ightarrow Q \propto rac{
ho}{\sigma^3} \propto r_{hf}^{-2.2}.$$

Phase Space Density of the DM

- Q_0 shown in the previous plot is based on stellar velocity dispersions, σ_* .
- Horiuchi et al. (2014) find $\eta_* = \sigma/\sigma_* = 1.5 \pm 0.2$
- Adopting this correction factor, we find

$$Q_{0,\text{DM}} = (1.61 \pm 0.42)Q_* \left(\frac{r_{hf}}{\text{pc}}\right)^{-n}$$

• where $n=2.27\pm0.15$ and $Q_*=\frac{M_{\odot}/pc^3}{({\rm km\ s^{-1}})^3}$

Using $Q(r_{hf})$ to find Z

- We can rewrite the $Q(r_{hf})$ power-law in terms of:
 - the unknown, primordial $\mathbf{Q}_{\mathbf{p}}$ and
 - an unknown radial scale, r_p :

$$Q_0 = Q_P \left(\frac{r_p}{r_{hf}}\right)^n = Q_P/Z_{\rm em}$$

$$Z_{\rm em} = (r_{hf}/r_p)^n$$

• Thus, determining r_p is the key to the empirical Z factor.

Empirical Limits on r_P

Q can only decrease (Liouville's Theorem), so

$$Z = (r_{hf}/r_p)^n \ge 1$$

$$r_p \le r_{hf,min}$$

Minimum r_{hf} values:

- Willman 1: $r_{hf} = 25 \pm 6 pc$

- Segue 1: $r_{hf} = 29 \pm 7 pc$

- Segue 2: $r_{hf} = 34 \pm 5 pc$

- Leo V: $r_{hf} = 42 \pm 5 pc$

$$r_p \lesssim 19 - 47 \text{ pc.}$$

Finding r_p analytically

- Determine when the virial mass (Boylan-Kolchin et al. 2013) of the MW halo entered the horizon:
 - Earliest time causal processes could affect the PSD of DM in a MW-sized overdensity and in its primordial subhalo overdensities

$$M_{\rm MW} = \frac{4}{3}\pi\rho_{m,0}(1+z)^3 \left(\frac{d_H(z)}{2}\right)^3 = 1.6^{+0.8}_{-0.6} \times 10^{12} M_{\odot}$$

This occurs when

$$z_{\rm MW} = 9.4^{-1.2}_{+1.6} \times 10^4$$

$$r_p = d_H(z_{\text{MW}})/2 = 26.7^{+8.3}_{-7.2} \text{ pc}$$

which agrees with empirical limits.

Q_p Values + DM Particle Mass

• Max/Min Q_0 ratio is $\sim 10^4$

$$\mathbf{Q}_{\mathbf{P}} = \mathbf{Z}_{\mathbf{em}} \mathbf{Q}_{\mathbf{0}}$$

• Max/Min Q_p differ by ~ 4.5

$$\frac{m_{\rm th}}{\rm keV} = \left(\frac{Z_{\rm em}Q_0}{A}\right)^{1/4} = \left(\frac{\left(\frac{r_{hf}}{r_p}\right)^n Q_0}{A}\right)^{1/4}$$

• Max/Min m_{th} values differ by ~ 1.5

Including all galaxy data uncertainties

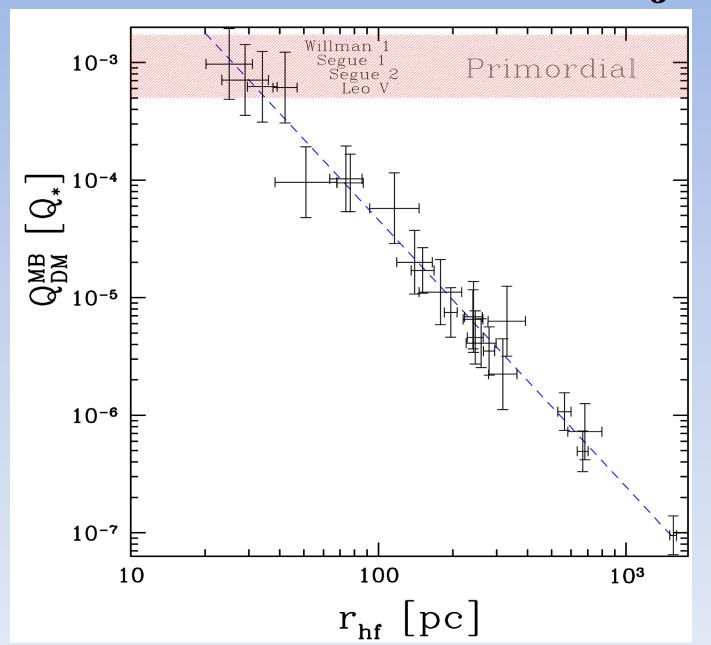
- $1 < Z < 10^4$
- $0.74 < m_{th}/keV < 2.8$ (mean 1.55 keV)

Non-thermal DM

• If the DM particle is a sterile neutrino, we can use the following transformation equations (e.g., Viel et al. 2005; Abazajian 2014) to find the corresponding non-thermal limits:

$$m_{s,\text{DW}} = 4.27 \text{keV} \left(\frac{\text{m}_{\text{th}}}{\text{keV}}\right)^{4/3} \left(\frac{\Omega_{\text{m},0} \text{h}^2}{0.1371}\right)^{-1/3} \simeq 1.5 m_{s,\text{SF}}$$

- Applying these transformations, we find:
 - 2.9 < m/keV < 16.9 (Dodelson-Widrow) X (Watson et al. 2012)
 - 1.9 < m/keV < 11.2 (Shi-Fuller) Bulbul et al. (2014) OK


Alternative transformations (deVega & Sanchez 2013):

$$m_{\nu}^{\text{DW}} = 2.85 \text{keV} \left(\frac{m_{\text{th}}}{\text{keV}}\right)^{4/3}; m_{\nu}^{\text{SF}} \cong 2.55 m_{th}$$

- 1.9 < m/keV < 11.3 (Dodelson-Widrow) X (Horiuchi et al. 2014)
- 1.9 < m/keV < 7.2 (Shi-Fuller)

Bulbul et al. (2014) OK

Identification of Primordial Objects

Implications for Galaxy Formation/Evolution

• If the 4 "primordial" dSphs have evolved undisturbed, their current densities should match virial values:

$$\rho_{\text{obs}} = 358 \rho_{\text{b,vir}} = 358 \rho_{M,0} (1 + z_{\text{coll}})^3$$

- Using $\rho_{obs} = \rho(r_{hf})$,
- $34 < z_{coll} < 78 (25 \text{ Myrs} 85 \text{ Myrs})$
- Nice agreement with early formation epoch of first stars in sterile neutrino cosmological models, e.g., Biermann and Kusenko (2006).

The Universal dSph DM Halo and the Free-Streaming Scale

• Observed properties of MW dSphs suggest that they formed from a consistent DM Halo (Wolf et al. 2013):

$$M_{
m MW~Sat}^{
m Univ} = (3.0 \pm 0.5) \times 10^9 M_{\odot}$$

• Does this universality suggest a special scale, perhaps the free-streaming mass scale?

$$M_{fs} = 4/3\pi\rho_{0,m} \left(\frac{\lambda_{fs}}{2}\right)^3 = 6.4 \times 10^{10} M_{\odot} \left(\frac{m_{\rm th}}{\rm keV}\right)^{-4}$$

• Taking $M_{
m MW~Sat}^{
m Univ} = M_{fs}$ yields

$$m_{\rm th} = 2.15 \pm 0.1 \ {\rm keV}$$

Summary II

- Using data from Walker et. al. (2009), we found a strong correlation between Q and $r_{\rm hf}$ for Milky Way dwarf satellite galaxies.
- Determing the primordial radial scale r_p , we established Q_p and limits on the DM particle mass:
 - $-0.74 < m_{th}/keV < 2.8 \text{ (mean 1.55 keV)}$
 - DW ruled out, Shi-Fuller 1.9 < m_{SF}/keV < 11.2
- Comparing to Q_P , we see 4 primordial MW dSphs: Leo V, Segue 1, Segue 2, and Willman 1.
- Implied Virialization Epochs for primordial dSphs $34 < z_{coll} < 78 \ (25 \ Myrs 85 \ Myrs)$
- Interpretting Univ. dSph DM Halo as M_{fs} implies $m_{th} = 2.15 \pm 0.1 \text{ keV}$

Conclusions

DW excluded via M31 X-ray constraints and phase space density constraints from MW dSphs.

(Watson et al. 2012, Horiuchi, et al. 2014, This Work)

A 7.14 keV Shi-Fuller sterile neutrino with $L_4 = 7$:

- Accounts for X-ray line anomaly found by Bulbul et al.
- Satisfies all galaxy constraints like m_{th} ~ 2 keV
- Avoids exclusion by Andromeda X-ray Constraints (Abazajian, et al. 2014)
- Consistent with Phase Space Density Constraints on MW dSphs
- Consistent with Free-Streaming Mass Scale implied by MW dSphs

(Horiuchi et al. 2014 + This Work)