From Planets to the Early Universe:

The James Webb Space Telescope

George Sonneborn JWST Project Scientist for Operations NASA Goddard Space Flight Center

19th Paris Cosmology Colloquium

ESA CSA 22-24 July 2015

NASA

The James Webb Space Telescope

Organization

Mission Lead: NASA's Goddard Space Flight Center Senior Project Scientist: Dr John Mather International collaboration: ESA & CSA Prime Contractor: Northrop Grumman Aerospace Systems

Instruments:

- Near Infrared Camera (NIRCam) Univ. of Arizona
- Near Infrared Spectrograph (NIRSpec) ESA
- Mid-Infrared Instrument (MIRI) ESA/JPL
- Near IR Imaging Slitless Spectrometer (NIRISS) CSA
- Fine Guidance Sensor (FGS) CSA

Operations: Space Telescope Science Institute

JWST's Broad Scientific Goals

The First Galaxies (z>8) Epoch of Reionization of the IGM Galaxy Evolution and Star Formation Exoplanets and Protoplanetary Disks Primitive Solar System Objects

24 July 2015

Key Technical Design Drivers

High sensitivity (25 m² collecting area) High angular resolution: 0.07 arcsec at 2 μ m Wavelengths: 1 – 28.5 μ m Zodiacal-limited imaging (λ <10 μ m) No mission-limiting cryogen

JWST Vital Statistics

- General purpose observatory: 5 years required; 10.5 year propellant lifetime
- Segmented, adjustable primary mirror, 6.5 m diameter
 - Diffraction limited at 2 μ m (0.07 arcsec) [~0.7 arcsec @ 20 μ m]
- Telescope and instruments passively cooled to ~40K by sunshield:
 - No consumable cryogen
- Sun-Earth L2 Orbit: I.5 million km from Earth; Ariane 5 launch (ESA)
- Four Science Instruments covering 0.6–28.5 μ m
 - Broad, medium, and narrow band imaging
 - Spectroscopy Multi Object, Slit, Integral Field, Grism/Prism
 - Coronagraphy Traditional Lyot, Four Quadrant Phase Masks
 - Aperture Mask Interferometry Non-Redundant Mask (NRM)

JWST Imaging Modes

Mode	Instrument	Wavelength (microns)	Pixel Scale (arcsec)	Full-Array* Field of View
Imaging	NIRCam*	0.6 - 2.3	0.032	2.2 x 2.2'
	NIRCam*	2.4 - 5.0	0.065	2.2 x 2.2'
	NIRISS	0.9 - 5.0	0.065	2.2 x 2.2'
	MIRI*	5.0 - 28.8	0.11	1.23 x 1.88′
Aperture Mask Interferometry	NIRISS	3.8 - 4.8	0.065	
Coronography	NIRCam	0.6 - 2.3	0.032	20 x 20"
	NIRCam	2.4 - 5.0	0.065	20 x 20"
	MIRI	10.65	0.11	24 x 24"
	MIRI	11.4	0.11	24 x 24"
	MIRI	15.5	0.11	24 x 24″
	MIRI	23	0.11	30 x 30"

24 July 2015

JWST Spectroscopic Modes

Mode	Instrument	Wavelength (microns)	Resolving Power $(\lambda/\Delta\lambda)$	Field of View
Slitless Spectroscopy	NIRISS	1.0 – 2.5	150	2.2' x 2.2'
	NIRISS	0.6 – 2.5	700	single object
	NIRCam	2.4 – 5.0	2000	2.2' x 2.2'
Multi-Object Spectroscopy	NIRSpec	0.6 - 5.0	100, 1000, 2700	3.4' x 3.4' with 250,000 0.20 x 0.46" apertures
Single Slit Spectroscopy	NIRSpec	0.6 – 5.0	100, 1000, 2700	slit widths 0.4" x 3.8" 0.2" x 3.3" 1.6" x 1.6"
	MIRI	5.0 - ~14.0	~100 at 7.5 microns	0.6" x 5.5" slit
Integral Field Spectroscopy	NIRSpec	0.6 - 5.0	100, 1000, 2700	3.0" x 3.0"
	MIRI	5.0 – 7.7	3500	3.0" x 3.9"
	MIRI	7.7 – 11.9	2800	3.5" x 4.4"
	MIRI	11.9 – 18.3	2700	5.2" x 6.2"
	MIRI	18.3 - 28.8	2200	6.7" x 7.7"

24 July 2015

Imaging Sensitivity (10 ksec)

Emission-Line Spectroscopy (R ~2000)

Continuum Spectroscopy (R~100, 10 ksec)

Low resolution (R~100) spectroscopy, point source

JWST will observe how planetary systems form and evolve

Planetary Systems & Origins of Life Formation of planets and solar systems

19th Paris Cosmology Colloquium

Underground

aquifer

Past Mars

Underground

aquifer?

Current Mars

24 July 2015

JWST will revolutionize understanding of exoplanet atmospheres

Composition is revealed by spectroscopy

So is the presence of life!

24 July 2015

JWST will image exoplanets (planets orbiting other stars)

JWST simulated near-infrared image of a 1-2 M_{Jup} planet at ~1 AU of a M0V star 10 pc from the Sun.

24 July 2015

JWST will see into the birthplaces of stars to reveal how they form and evolve

JWST will see how the structure and composition of galaxies evolve across cosmic time

ASA, ESA, the Hubble Heritage (AURA/STScI)-ESA/Hubble Collaboration, an A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)

JWST is designed to look back in time to see the first galaxies A Brief History of Time

How Can JWST Observations Contribute to Cosmology? (1)

- Find galaxy candidates to z>20 (HST limit is $z\sim9$)
 - NIRCam imaging (1-5 $\mu m)$ wide and medium filters
 - Supporting 5-28 μ m imaging (MIRI)
- Obtain 1-5 μm spectra with NIRSpec of galaxies discovered by NIRCam
 - Galaxy candidates need spectroscopic confirmation of z
 - Rest-frame far ultraviolet $\lambda > 911$ Å
- Search for Lyman-alpha emission-line galaxies at 7 < z < 17
 - Blind search with wide-field grism spectra (NIRISS)
- High-z transients (PISN, GRBs, etc)? Time dilation is significant and a challenge to identifying variable objects.

Finding the First Galaxies (1)

- Highest redshift candidates found with HST (z~9) are faint and red.
- Higher redshift objects are invisible to HST, but will be found by JWST and studied spectroscopically.

Hubble Ultra Deep Field IR

Finding the First Galaxies (2)

- Latest HST deep field: the WFC3-IR UDF (at right), imaged in 4 filters (1.05-1.60 µm). Took 16 days!
- NIRCam on JWST can repeat that UDF (same depth, better angular resolution) in only 6 hr clock time.
- JWST has sensitivity over 1-5 microns to find galaxies to z>20.

Illingworth+ 2013

NIRCam – Near Infrared Imaging

- Two identical instrument modules
- A dichroic splits the beam at 2.35 μm
- Each module observes simultaneously in short (0.6-2.3 μm) and long (2.4-5 μm) wavelengths.
- Each channel has several wide (R~4), medium (R~10), and narrow (R~100) band filters
- Each module has five 2048x2048 HgCdTe detectors.
- Short wave detectors: 0.032"/pixel
- Long wave detectors: 0.065"/pixel
- NIRCam also has chronographic masks and a R~2000 grism (2.5-5 μm)

NIRSpec Microshutter Array

- First multi-object spectrograph in space
- 250K programmable apertures
- Simultaneous spectra of >100 objects over ~10 sq arc min
- Four MSA Quadrants, each with 365 shutters (dispersion) X 171 shutters (spatial)
- Each shutter has ~0.2" x 0.45" clear aperture

NIRSpec Multi-Object Spectroscopy Example

- Observer defines open/closed shutter pattern for each observation
- Trios of microshutters (background –sourcebackground) opened
- Other shutters remain closed
- Requires ~0.005" astrometry of targets relative to stars in the same field for target acquisition.

One MSA quadrant

Will JWST See the First Stars?

If current theory of Pop III star formation is roughly correct it will be impossible for JWST to detect them directly in the high-z Universe!

How Can JWST Observations Contribute to Cosmology? (2)

- IR light curves of supernovae are insensitive to dust extinction
- Spectroscopy of low-z Type la supernovae, especially at late times
 - SN la nucleosynthesis and explosion geometry
 - Sensitivity to obtain late-time spectra of any SN la within ~100 Mpc
- Reduce uncertainty in H_0 to <1% by continuation of Cepheid and SN la studies in more galaxies
- Your new ideas!!

HUBBLE CONSTANT: REBUILD DISTANCE LADDER (Riess 2011)

Eliminating sources of *systematic* error between anchor and calibrator: 1) use same instrument 2) same Cepheid parameters (Period,Z) 3) better anchor

PRESENT DISTANCE LADDER (100 Mpc)

NEW LADDER (100 Mpc)

JWST extends volume and sample for SN la calibration

A Little High-Redshift History

- When JWST was first imagined (1995) the highest redshift QSO was z=4.75 (highest-z galaxy much less than that)
- The first galaxies were thought to be at z > 7.
- HST and ground-based observatories pushed the redshift frontier over the last 20 years and the first galaxies still have not been found.
- They lie at z>9, beyond the reach of HST and ground based telescopes.
- JWST's capabilities are needed now more than ever to address this problem.

How does JWST Work?

1.5 million km

. .

JWST Status

- On schedule for launch in October 2018
- Instruments completed and undergoing cryo-vacuum testing
- Telescope mirrors and backplane structure finished
 - Telescope assembly begins Fall 2015
- End-to-end thermal/optical test of telescope and instruments in 2017
- Spacecraft and sunshield are under construction
- Flight and ground software systems being written and tested

Science Instruments Integrated - 2014

ISIM Moves to Cryo-Vac Chamber at GSFC

Full-Scale Sunshield Deployment Test - 2015

Telescope Optics Completed

- All telescope optics completed, cryotested, and ready for I&T
- Telescope composite structures being tested prior to I&T
- Pathfinder telescope now at JSC

Telescope Structure Completed

24 July 2015

Cleanroom and door to Chamber A at Johnson Space Center

No.

Johnson Space Center Chamber A

24 July 2015 aris Cosmology Colloquium

From Now to Launch

- Test instrument module (2015)
- Build and test sunshield (2015-16)
- Build and test spacecraft (2015-17)
- Assemble and test telescope (plus instruments) (2015-17)
- Integrate and test telescopeinstrument system with spacecraft and sunshield (2017-18)
- Develop and test ground system and Science & Operations Center (2015 – 17)
- Transport by ship from California to French Guiana for launch (2018)

19th Paris Cosmology Colloquium

24 July 2015

JWST Operations in One Chart

- Flight and science operations at STScI in Baltimore
- Annual call for proposals; vast majority of time to GOs
 - Small, Medium, Large proposals starting with Cycle I
- Science planning supports wide range of observations
 - Imaging mosaics, parallels, time/phase critical, moving targets, etc
- Target of Opportunity response as short as 2 days
- Calibration pipelines will produce science-quality data
- Data archive continuously updated with latest processing
- Very rich spectral data sets (MOS and IFUs); supporting analysis tools being developed

The JWST Orbit

- 100% sky coverage over year
- Targets generally observable 2X/yr
- ~35% sky coverage on any day
- No observations within 45° of anti-sun

No occultations of Sun by Earth or Moon

Countdown to Science

Sept 2017	Guaranteed Time Observers finalize targets/observations
Nov 2017	Cycle I General Observer Call for Proposals Released
Feb 2018	Deadline for Cycle I GO proposals
Oct 2018	LAUNCH (observatory commissioning lasts 6 months)
April 2019	Cycle I observations begin
~Sept 2019	Cycle 2 GO Call for Proposals released
~Dec 2019	Deadline for Cycle 2 GO proposals

Summary

- JWST will provide tremendous advances in infrared sensitivity and spatial resolution.
- Imaging and spectroscopic capabilities designed to address high-redshift and cosmology science.
- Launch in October 2018
- Cycle I Call for Proposals in late 2017 (~2 years)

http://www.jwst.nasa.gov/ http://www.stsci.edu/jwst/ http://jwstinput.wikidot.com/