A Search for a keV Signature of Radiatively Decaying Dark Matter with *Suzaku XIS* and Future Missions

> N. Y. Yamasaki with much help by **N. Sekiya**, K. Mitsuda, R. Yamamoto (ISAS/JAXA)

Outline

- 1. Introduction: Why astrophysical search in keV range ?
- 2. Strategy of our study
 - Selection of targets and detectors
- 3. Analysis details: We need to be very careful !
 - Line search and LEE effect
- 4. Future prospects and Conclusion

Introduction

DM candidates

	WIMPs	SuperWIMPs	Light \overline{G}	Hidden DM	Sterile v	Axions
Motivation	GHP	GHP	GHP/NPFP	GHP/NPFP	v Mass	Strong CP
Naturally Correct Ω	Yes	Yes	No	Possible	No	No
Production Mechanism	Freeze Out	Decay	Thermal	Various	Various	Various
Mass Range	GeV-TeV	GeV-TeV	eV-keV	GeV-TeV	keV	ueV−meV
Temperature	Cold	Cold/Warm	Cold/Warm	Cold/Warm	Warm	Cold
Collisional						
Early Universe		$\sqrt{}$				
Direct Detection	$\sqrt{}$					$\sqrt{}$
Indirect Detection	$\sqrt{}$				$\sqrt{}$	
Particle Colliders	$\sqrt{}$	$\sqrt{\sqrt{1}}$	$\sqrt{\sqrt{1}}$			

The particle physics motivations are discussed in Section 2.2; GHP and NPFP are abbreviations for the gauge hierarcny problem and new physics flavor problem, respectively. In the last five rows, $\sqrt{\sqrt{}}$ denotes detection signals that are generic for this class of dark matter candidate and $\sqrt{}$ denotes signals that are possible, but not generic. "Early Universe" includes phenomena such as BBN (Big Bang nucleosynthesis) and the CMB (cosmic microwave background); "Direct Detection" implies signatures from dark matter scattering off normal matter in the laboratory; "Indirect Detection" implies signatures of late time dark matter annihilation or decay; and "Particle Colliders" implies signatures of dark matter or its progenitors produced at colliders, such as the Large Hadron Collider (LHC). See the text for details.

Sterile ν (4th right-handed ν) in keV can suppress the small scale fluctuation, and solve "sub-halo" problem.

Latest News From the Universe, 19th Paris Cosmology Colloquium, 22-24 July 2015

Feng , 2010

Expected intensity by astrophysical observation

Boyarsky et al. 2010

Many studies

Table 2.2 Detection reports of the possible 3.5 keV signature (Iakubovskyi, 2014).

Reference	Target	Instrument	Exposure	Note	Reference	Target	Instrument	Exposure	Energy	Intensity
10010101100	101800	(Satellite)	[ksec]	1.000				[ksec]	$[\mathrm{keV}]$	$[10^{-6} \text{ cm}^{-2} \text{ s}^{-1}]$
Bovarsky+ 2006b	MW*	XMM-Newton	1450		Bulbul+ 2014	Full stacked clusters	MOS^\dagger	6784	$3.57{\pm}0.02$	$4.0 {\pm} 0.8$
Boyarsky + 2006c	Coma, Virgo	XMM-Newton	20. 40			Full stacked clusters	PN^\dagger	2071	$3.51{\pm}0.03$	$3.9^{+0.6}_{-1.0}$
Boyarsky + 2006d	LMC^{\dagger}	XMM-Newton	20			$\operatorname{Coma+Cen+Oph^*}$	MOS	525	3.57(fix)	$15.9^{+3.4}_{-3.8}$
Riemer-Sørensen+ 2006	MW	Chandra	_			$\operatorname{Coma+Cen+Oph}$	PN	184	3.57(fix)	< 9.5(90%)
Watson+ 2006	M31 center	XMM-Newton	35			Perseus*	MOS	317	3.57(fix)	$52.0^{+24.1}_{-15.2}$
Riemer-Sørensen+ 2007	A520	Chandra	67			Perseus	PN	38	3.57(fix)	< 17.7(90%)
Bovarsky+ 2007	MW, UMi [‡]	XMM-Newton	547.7			Perseus	MOS	317	3.57(fix)	$21.4_{-6.3}^{+7.0}$
Abazajian+ 2007	MW	Chandra	1500			Perseus	PN	38	3.57(fix)	< 16.1(90%)
Boyarsky + 2008	Bullet Cluster	Chandra	450			Clusters	MOS	5941	3.57(fix)	$2.1_{-0.5}^{+0.4}$
Boyarsky+ 2009	M31 center	XMM-Newton	130			Clusters	PN	1849	3.57(fix)	$2.0^{+0.3}_{-0.5}$
Loewenstein+ 2009	$\rm UMi^{\ddagger}$	Suzaku	70			Perseus	$ACIS-S^{\ddagger}$	0.9	$3.56{\pm}0.02$	$10.2^{+3.7}_{-3.5}$
Riemer-Sørensen+ 2009	Draco [§]	Chandra	32			Perseus	ACIS-I [‡]	0.5	3.56(fix)	$18.6^{+7.8}_{-8.0}$
Loewenstein+ 2010	Willman 1^{\S}	Chandra	100	2.5 keV line (1.8σ) .		Virgo*	ACIS-I	0.5	3.56(fix)	< 9.1(90%)
Prokhonov+ 2010	MW center	Suzaku	370	8.7 keV line (3.0σ) .	Boyarsky+ 2014a	M31	MOS	979	$3.53{\pm}0.03$	$4.9^{+1.6}_{-1.3}$
Boyarsky+ 2010	M31, Fornax,	XMM-Newton,	400, 52,	No 2.5 keV line.		M31	MOS	1473	3.50 - 3.56	$< 1.8(2\sigma)$
U U	Sculptor	Chandra	162			Perseus	MOS	529	$3.50{\pm}0.04$	$7.0{\pm}2.6$
Nieto+ 2010	Willman 1 [§]	Chandra	100	No 2.5 keV line.		Perseus	PN	216	$3.46{\pm}0.04$	9.2 ± 3.1
Borriello+ 2012	M33	XMM-Newton	20 - 30			MW	MOS	15700	3.45 - 3.58	$< 0.7(2\sigma)$
Watson+ 2012	M31 off-center	Chandra	53		Riemer-Sørensen $+$ 2014	MW center	ACIS-I	751	~ 3.5	$< 25(2\sigma)$
Loewenstein+ 2012	Willman 1	XMM-Newton	60		Jeltema+ 2014	MW center	MOS	1375	~ 3.5	< 41
Kusenko+ 2013	UMi, Draco	Suzaku	200, 200			MW center	PN	487	~ 3.5	< 32
Horiuchi+ 2014	M31	Chandra	404			M31	MOS	979	$3.53{\pm}0.07$	2.1 ± 1.5
Bulbul+ 2014	Clusters	XMM-Newton	8855	3.5 keV line (4.3σ) .	Boyarsky $+$ 2014b	MW center	MOS	2640	$3.539 {\pm} 0.011$	29 ± 5
Boyarsky+ 2014a	M31, Perseus	XMM-Newton	2452, 745	3.5 keV line (4.4σ) .	Malyshev+ 2014	Combined dSphs	MOS+PN	822 + 233	3.55(fix)	< 0.254(90%)
U U	MW	XMM-Newton	15700	No 3.5 keV line.	Urban+ 2014	Perseus core	XIS^{\S}	740	$3.510^{+0.023}_{-0.008}$	$32.5_{-4.3}^{+3.7}$
Boyarsky+ 2014b	MW center	XMM-Newton	2640	3.5 keV line (5.7σ) .		Perseus confined	XIS	740	$3.592\substack{+0.021\\-0.024}$	$18.8_{-5.5}^{+6.5}$
- •						Coma*	XIS	164	~ 3.45	~ 30

Table 2.1 Previous searches for a keV signature of dark matter (examples).

Notes.

* The Milky Way galaxy.

† Large Magellanic Cloud.

‡ UMi: Ursa Minor dwarf galaxy.

§ Dwarf galaxies (satellite galaxies of the Milky Way)

Notes.

 \ast Clusters of galaxies.

† X-ray CCD instruments of XMM-Newton.

Ophiuchus*

Virgo

‡ X-ray CCD instruments of Chandra.

 \S X-ray CCD instruments of Suzaku.

Summarized by Sekiya PhD thesis (2015)

83

90

 ~ 3.45

3.55

 ~ 40

 $< 6.5(2\sigma)$

XIS

XIS

3.5 keV line ?

(3.55-3.57)±0.03 keV line from clusters of galaxies (Bulbul+2014)

Figure 6. 3–4 keV band of the stacked *XMM-Newton* MOS spectrum of the full sample. The spectrum was rebinned to make the excess at \sim 3.57 keV more apparent.

No detection in M31 and GC (Jeltema & Profumo 2015)

Latest News from the Universe, 19th Paris Cosmology Colloquium, 22-24 July 2015

Suzaku search for DM in Perseus cluster

Suzaku is also sensitive to detect Cr lines

Table 4. Suzaku XIS and XMM-Newton EPIC observations.

Detector	Area* (cm ²)	FOV [†] (arcmin ²)	exp [‡] (ks)	Area $\times \exp(10^6 \text{ cm}^2 \text{ s})$	Area× exp × FOV (10^9 cm ² s arcmin ²)
XIS/FI	260	320	1040	270	86.5
XIS/BI	260	320	530	138	44.1
Total	_	_	—	408	130.6
MOS	300	710	317	95.1	67.5
pn	700	710	38	26.6	18.9

*Effective area at energy of 3.5 keV.

[†]Detector's field of view.

[‡]Exposure time. EPIC values are those of Bulbul et al. (2014). The FI and MOS exposures are the sums of those of each sensor (i.e., XIS-0+XIS-3 or MOS-1+MOS-2).

Tamura, T. +, 2015, PASJ, 67,23

X-ray view of Perseus Cluster

Latest News from the Universe, 19th Karis Losmology Lolloquium, 22-24 July 2015

 \bigcirc

X-ray emission spectrum from hot plasma

Continuum (Bremstrahlung by electrons) + many emission lines Emission line pattern changes by temperature and metal abundances.

Latest News from the Universe, 19th Paris Cosmology Colloquium, 22-24 July 2015

X-ray view of M31

(NASA/ Z Li & Q.D.Wang)

28 arcminutes

FIG. 5.—Same as Fig. 4 but with the fit performed over the full 0.4–7 keV energy range using the LMXB+3MKL model. [See the electronic edition of the Journal for a color version of this figure.]

X-ray spectrum of central 3 acrimony by XMM-Newton (Takahashi + 2004) X-ray spectrum is LMXB + 3 hot plasma (kT~ 0.1, 0.3, 0.6 keV)

Galactic Center

Lots of point sources, including central AGN and binaries, which are often time-variable. diffuse emission of thermal and reflecting molecular clouds.(Muno et al. 2008)

Chandra image of 16 arcmin across NASA/CXC/UCLA/MIT/M.Muno et al. Energy (Red: 0.5-2.0 keV; Green: 2.0-4.0 keV; Blue: 4.0-8.0 keV)

The absorbing material is very thick, to be 10²⁴ cm⁻².

My approaches to DM

(Yoshikawa+2003, Yoshikawa+2004, Kawahara+2006)

Understanding of "background" emission is essential

Strategy of our study

Strategy to search DM clues

If a line can be detected with "n" σ , it can be written as

$$n = \frac{S}{\sqrt{S + 2B}} = \frac{I_S A \Omega T}{\sqrt{(I_S + 2I_B \Delta E) A \Omega T}}$$
$$I_S = \frac{n^2 + \sqrt{n^4 + 8n^2 I_B \Delta E A \Omega T}}{2A\Omega T}$$

Selection of targets, detectors, and dataset to maximize "n"

1. Target: DM I_S vs "background" I_{B1} emission in fov

2.Detector: Line sensitivity limited by energy resolution ΔE and non-Xray background I_{B2}

3.Dataset: available for $A\Omega$ and exposure time T

Column density of DM

DM locates in large "gravitational" objects. Such system contains baryons.

	Typical mass	Column density of DM
Rich cluster (Perseus)	10 ¹⁴⁻¹⁵ M⊙	100-1000 M⊙/pc²
Galaxy (M31/GC)	10 ¹¹⁻¹² M⊙	200-600 M⊙/pc²
Our Galactic halo or "X- ray Diffuse Backgrouund (XDB)"	(10 ¹¹ M⊙)	50-100 M⊙/pc²
Dwarf galaxy	>10 ⁹ M⊙	50-100 M⊙/pc²

DM column density of Milky way estimated by rotation curve and NFW profile parameters (Sofue+2012)

see ex.Boyarsky + 2010,2014

X-ray background

X-ray background spectrum Sum of AGN (extragalactic) + Galactic hot halo + Local (~ neighborhood of the Solar system)

Rosat 1/4 keV band image

Rosat 3/4 keV band image

X-ray spectrum of the Galactic halo

Latest News From the Universe, 19th Paris Cosmology Colloquium, 22-24 July 2015

Line Sensitivity by X-ray CCD

Line sensitivity/DM column density

M31 and Galactic halo can give better sensitivity. (Cluster is too bright in X-ray, even though it contains more DM.)

Exposure for the Galactic halo can be larger than that for M31.

Current X-ray observatories

礼	見野 [amin ²]	Chandra/ACIS 8.3Chandra/AGIS	XMMI-Newton/PN, ~700 × (2MOS 1PN)	Suzaku/XIS 17.8 Suzaku/XIS	
エネルギーバンド [keV] エネルギーバンド [keV]		0.3 – 12 50 – 200 (4FI+6BI)	0.15 – 15 50 – ⁷⁰⁰ (2MOS+PIN)	0.2 – 12 50 – 200 ^{17,8} ×17.8(3Fl+1Bl)	
有効面積 @ 1 keV [cm ²] Energy band (keV) NXB 輝度 [cm ⁻² s ⁻¹ sr ⁻² keV ⁻¹]		200 (4FI), 400 (6BI) 0.3-12 10 - 1000 (个安定)	800 (2MOS), 1200 (PN) 0.15-15 5 - 100 (不安定)	660 (3FI), 320 (BI) 0.2-12 1 - 10 (安定)	
	Energy resolution (eV)	50-200	50-200	50-200	
	Effective area (cm²)	200 (4FI), 400 (6BI)	800 (2MOS), 1200 (PN)	660 (3FI), 320 (BI)	
	NXB (cm ⁻² s ⁻¹ sr ⁻¹ keV ⁻¹)	10-1000 (unstable)	5-100 (unstable)	1-10 (stable)	
Orbit 133000 km x 1600		133000 km x 16000 km	114000 km x 7000 km	Low Earth (550 km)	

Analysis details

Suzaku analysis of the Galactic halo

Sekiya et al. PASJ, accepted (2015) (arXiv:1504.02826)

1.Data selection from the archive

- i) Data screening to obtain stable background
 - a. Solar wind charge exchange emission
 - b. Fluorescent lines from the Earth atmosphere
 - c. Low Non-X-ray background
- ii) Remove point sources
- 2.Reproduction modeling of the "Soft X-ray Background"
- 3.Systematic errors and its origins
- 4.Obtained upper limits for unknown emission lines
- 5.LEE correction
- 6.Constraints on sterile neutrino

Data selection from Suzaku archive

Galactic coordinate centered on the "Anti-Center"

187 dataset with total from Suzaku archive

- XIS (CCD) nominal clocking mode
- No bright sources or diffuse emission structure
 - |b|>20° to avoid Galactic plane emission
 - Separate from North Polar Spur

Magenda regions are excluded to remove source confusion.

A sample of GTI (Good Time Interval) to cut Solar wind charge exchange

Line emission during Solar flare From Fujimoto et al. 2006

Avoid South Atlantic Anomaly and COR < 8 GV/c \Rightarrow Low CR background Remove low elevation data from the Earth limb \Rightarrow Fluorescence (See Sekiya+2015)

 \Rightarrow Total 31.5 Msec data , 2x10⁶ photons

Soft X-ray Background

(1) Heliospheric charge exchange (OVII Ly γ)
(2) Local hot bubble (kT ~ 0.1 keV plasma)
+[(3) Galactic Halo Emission (kT ~ 0.2 keV + >0.4 keV plasma)
+(4) Cosmic X-ray Background (photon index ~1.4)]*ISM absorption (see Yoshino et al. 2008)

Correction of responses

Crab Nebula (Brightest SNe in X-ray sky, and featureless synchrotro emission) calibration in every year \Rightarrow Residuals < 8%

Reproduction of NXB

Suzaku NXB is very low and stable. Usually, it is estimated by "night Earth" database within a few % (Tawa et al. 2008).

Table 4.4 Instrumental line emission below 7.0 keV (Tawa et al., 2008).

Line	Energy [keV]	Origin
Al-K α	1.486	OBF, housing, alumina substrate of XIS
$\text{Si-K}\alpha$	1.740	XIS
Au-M α	2.123	Housing, XIS substrate, heat-sink
Mn-K α	5.895	Calibration source
Mn-K β	6.490	Calibration source

Improved the reproducibility by direct fitting of background lines

Modeling of "background" emission

Latest News from the Universe, 19th Paris Cosmology Colloquium, 22-24 July 2015

We cross-checked the data by original 187 data set and annual dataset

Statistical limits for unknown emission line

Add a line at every 25 eV with σ =0 eV between 0.5 and 7 keV, and obtain allowed intensity or upper limits.

Latest News From the Universe, 19th Paris Cosmology Colloquium, 22-24 July 2015

- - Check fitting errors and model uncertainty (mainly the metal abundance of the hot plasma) ⇒small effect 1.06 1.04 1.02
- Response uncertainty

Systematic errors (cont.)

- NXB uncertainty
 - Put maximum/minimum allowable NXB
 - Fit NXB lines in 187 (unstacked) dataset, and check the deviation

Latest News From the Universe, 19th Paris Cosmology Colloquium, 22-24 July 2015

Look-Elsewhere Effect correction

As we do not know the "true" energy of DM, we tried (7-0.5 keV)/25 eV = 260 lines. a "3 σ " line is expected ~ 260 * 0.0027 = 0.7 \Rightarrow Look Elsewhere Effect (LEE) (see ex. Gross & Vitells, 2010)

We simulated 4000 mock spectra with the same response, emission and background models, and search "DM" lines to investigate false detection probability.

4.2 σ line: 5/4000 \Rightarrow p-value of 0.135 % or "3 σ "

All lines have confidence level of less than 1**σ**

3.2 σ line: 640/4000 \Rightarrow p-value of 15.9 % or "1 σ "

Constraints on unknown emission line

 $3\sigma = Max(Fit of 31.5Ms data, distribution of 4000 simulation)$

Future Prospects

Future prospects with Astro-H

SXS case study

SXS (dE = 4 eV)

SXS: FOV is small, and blank sky data with large exposure time will not feasible. M31 will be the best target.

 $\sim 3\sigma$ of this study (Suzaku)

Latest News from the Universe, 19th Paris Cosmology Colloquium, 22-24 July 2015

Summary and Conclusion

- ✓ To search X-ray signature from DM, we select the archival data of the soft X-ray background by Suzaku, as the current best method.
- ✓ In total 187 Suzaku observation with 31.5 Msec exposure between 2005 and 2013 are analyzed.
- ✓ We set the upper limits for keV-region DM with very careful study and LEE correction.
- ✓ It is possible to search deeply above 2 keV with M31 observation by Astro-H in future (but coming soon !)

See Tamura et al. PASJ, 67, 23 (2015) (arXiv:1412.1869) & Sekiya et al. (arXiv:1504.02826)