Westfälische Wilhelms-Universität Münster

The KATRIN experiment and next-generation tritium β-decay experiments for keV-scale sterile neutrinos

20th Paris Chalonge de Vega Colloquium 2016, Observatoire de Paris

Christian Weinheimer

Institut für Kernphysik, Westfälische Wilhelms-Universität Münster weinheimer@uni-muenster.de

Introduction The KArlsruhe TRlitium Neutrino experiment KATRIN Beyond KATRIN and TOF@KATRIN Sterile neutrino searches with KATRIN Conclusions

Photo: M. Zacher

$\begin{array}{c} \text{Positive results from} \\ \nu \text{ oscillation experiments} \end{array}$

atmospheric neutrinos (Kamiokande, Super-Kamiokande, ...)

accelerator neutrinos

(K2K, T2K, MINOS, OPERA, MiniBoone)

solar neutrinos

(Homestake, Gallex, Sage, Super-Kamiokande, SNO, Borexino)

reactor neutrinos (KamLAND, CHOOZ, Daya Bay, DoubleCHOOZ, RENO, ...)

Christian Weinheimer

 \Rightarrow non-trivial v-mixing $egin{aligned} m{
u}_e \ m{
u}_\mu \ m{
u}_ au \ \end{pmatrix} = \left(egin{aligned} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \ \end{pmatrix} \cdot \left(egin{aligned}
u_1 \
u_2 \
u_2 \
u_3 \ \end{pmatrix} \end{aligned}
ight)$ with: $0.37 < \sin^2(\theta_{23}) < 0.63$ maximal! $0.26 < \sin^2(\theta_{12}) < 0.36$ large ! $0.018 < \sin^2(\theta_{13}) < 0.030 \quad 8.9^{\circ}$ 7.0 $10^{-5} \text{ eV}^2 < \Delta m_{12}^2 < 8.2 \ 10^{-5} \text{ eV}^2$ 2.2 10^{-3} eV^2 < $|\Delta m_{13}^2|$ < 2.6 10^{-3} eV^2 \Rightarrow m(v_i) \neq 0, but unknown ! \rightarrow direct m(v) & 0v $\beta\beta$ &searches,

cosmology

Westfälische Wilhelms-Universität Münster

Need for the absolute v mass determination

Direct determination of $m(v_e)$ from β decay

β: dN/dE = K F(E,Z) p E_{tot} (E₀-E_e)
$$\Sigma |U_{ei}|^2 \sqrt{(E_0-E_e)^2 - m(v_i)^2}$$

phase space: p_e E_e E_v p_v

with "electron neutrino mass": $m(v_e)^2 := \sum |U_{ei}|^2 m(v_i)^2$

(modified by electronic final states, recoil corrections, radiative corrections)

Direct determination of $m(v_e)$ from β decay

WESTFÄLISCHE Wilhelms-Universität Münster

The Karlsruhe Tritium Neutrino Experiment KATRIN - overview

L Westfälische Wilhelms-Universität Münster

Molecular Windowless Gaseous Tritium Source WGTS

Transport and differential & cryo pumping sections

Monitoring & calibration system Molecular windowless gaseous tritium source

Differential pumping

 \Rightarrow adiabatic electron guiding & T₂ reduction factor of ~10¹⁴

The tritium source and transport section is really there !

Christian Weinheimer

oquium 2016

The classical way: WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER WESTFÄLISCHE WILHELMS-UNIVERSITÄT Tritium β-spectroscopy with a MAC-E-Filter

KATRIN main spectrometer

UHV conditions & radon trapping

Inner electrode system: background suppression & potential shaping

Main spectrometer and detector commissioning – objectives

Primary objectives:

- test of hardware, software and slow control components
- provide ultra high vacuum conditions at the $p\,\approx\,10^{\text{-}11}$ mbar level
- detailed understanding of the transmission properties of this MAC-E-Filter (E = 18.6 keV with Δ E = 0.93 eV resolution) and compare to simulation with Kasseiopeia
- detailed understanding and passive & active control of background processes

Commissioning of main spectrometer ($\Delta E = 0.93 \text{ eV}$) and detector

13

Possible background sources at KATRIN

Background sources at KATRIN: detailed understanding, but ...

- · 8 sources of background investigated and understood
- · 7 out of 8 avoided or actively eliminated by
 - fine-shaping of special electrodes
 - symmetric magnetic fields
 - LN₂-cooled baffles (cold traps)
 - wire electrode grids

 1 out of 8 remaining: caused by ²¹⁰Pb on spectrometer walls (neutral H* atoms ionised by black-body radiation in spectrometer)

- Further background reduction measures being studied
- In addition: several mitigation strategies currently under investigation:

- Further background reduction measures being studied
- In addition: several mitigation strategies currently under investigation:
 - optimized scanning
 - range of spectral analysis

- Further background reduction measures being studied
- In addition: several mitigation strategies currently under investigation:
 - optimized scanning
 - range of spectral analysis
 - flux tube compression by increasing B

Christian Weinheimer

KATRIN timeline

- 2016: Commissioning of pre and main spectrometer with detector SDS 3Continue commissioning of KATRIN Source and Transport SectionSending electrons through the 70m long beamline
- 2017: Ramping up Windowless Gaseous Tritium Source: D₂, D₂(T₂), T₂
 Commissioning of complete KATRIN system
 First tritium data
 First chance to look for keV sterile neutrinos
 Regular neutrino mass measurements

Influence of a 4th sterile neutrino near the endpoint E₀

Sensivity on sterile eV neutrinos

M.Kleesiek, PhD thesis, KIT (2014)

see also:

- J. A. Formaggio, J. Barret, PLB 706 (2011) 68
- A. Sejersen Riis, S. Hannestad, JCAP02 (2011) 011
- A. Esmaili, O.L.G. Peres, arXiv:1203.2632

Can KATRIN be largely improved ? Problems to be solved

The source is already opaque → need to increase size transversally magnetic flux tube conservation requests larger spectrometer too but a Ø100m spectrometer is not feasible

Possible ways out:

a) source inside detector (compare to $0\nu\beta\beta$) using cryogenic bolometers (ECHo, HOLMES, ..)

Recent achievements by ECHo:

ESTFÄLISCHE

Wünster

- new Q-value: 2.8 keV (independently by MMC & Penning trap, was 2.5 keV before!)
- new source production: chemical purification + mass separation \rightarrow no ¹⁴⁴Pm or ^{166m}Ho

20th Paris Cosmology Colloquium 2016

- very good energy resolution of this technology ($\Delta E_{FWHM} = 1.6 \text{ eV}$ at 6 keV)
- ultra-short response (pile-up!): risetime 90 ns
- 128 pixels: microwave SQUID multiplexing
- funding for ECHo-1k

20th Paris Cosmology Colloquium 2016

Christian Weinheimer

Can KATRIN be largely improved ? Problems to be solved

1) The source is already opaque

 → need to increase size transversally magnetic flux tube conservation requests larger spectrometer too but a Ø100m spectrometer is not feasible

Possible ways out:

- a) source inside detector (compare to $0\nu\beta\beta$) using cryogenic bolometers (ECHo, HOLMES, ..)
- b) hand-over energy information of β electron to other particle (radio photon), which can escape tritium source (Project 8)

Project 8's goal: Measure coherent cyclotron radiation of tritium β electrons

General idea:

B. Monreal and J. Formaggio, PRD 80 (2009) 051301

• Source = KATRIN tritium source technology :

uniform B field + low pressure T₂ gas $\beta \text{ electron radiates coherent}$ cyclotron radiation $\omega(\gamma) = \frac{\omega_0}{\gamma} = \frac{eB}{K+m_e}$ 45000 40000 35000 25000 25000 15000 5000 0 27.1 27.2 27.3 27.4 27.5 27.6 27.7 27.8 27.9 28 Frequency (GHz)

28

 Antenna array (interferometry) for cyclotron radiation detection since cyclotron radiation can leave the source and carries the information of the β-electron energy

Westfälische Wilhelms-Universität Münster

Project 8's phase 1: detection single electrons from ^{83m}Kr

Westfälische Wilhelm5-Universität Münster

Project 8's phase 1: Detection single electrons from ^{83m}Kr

Christian Weinheimer

20th Paris Cosmology Colloquium 2016

Westfälische Wilhelms-Universität Münster

Project 8's phase 1: Detection single electrons from ^{83m}Kr

courtesy J. Formaggio, RGH Robertson Christian Weinheimer

Can KATRIN be largely improved ? Problems to be solved

1) The source is already opaque

 → need to increase size transversally magnetic flux tube conservation requests larger spectrometer too but a Ø100m spectrometer is not feasible

Possible ways out:

- a) source inside detector (compare to $0\nu\beta\beta$) using cryogenic bolometers (ECHo, HOLMES, ..)
- b) hand-over energy information of β electron to other particle (radio photon), which can escape tritium source (Project 8)
- c) make better use of the electrons
 - \rightarrow time-of-flight spectroscopy

Westfälische Wilhelm5-Universität Münster

Alternative spectroscopy: measure time-of-flight TOF through KATRIN spectrometer

Christian Weinheimer

Alternative spectroscopy: measure time-of-flight TOF through KATRIN spectrometer

WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

 $0*10^{0}$

18573

18574

18575

0.1

0.05

0

0

Sensitvity improvement on m²(v_e) by ideal TOF determination

Measure at 2 (instead of \approx 30) different retarding potentials since TOF spectra contain already all the information

 \rightarrow Factor 5 improvement in m²_v w.r.t. standard KATRIN in ideal case !

N. Steinbrink et al. NJP 15 (2013) 113020

Coincidence request between start and stop signal \rightarrow nice background suppression

How to realize time-of-flight spectroscopy @KATRIN

Advantage: measure β -spectrum by TOF at one (a few) retarding potential(s) i.e. as measuring differential β -spectrum

Stop: Can measure time-of-arrival with KATRIN detector with Δt = 50 ns \rightarrow ok

Start: e⁻-tagger: Need to determine time-of-passing-by of e⁻ before main spectrometer without disturbing energy and momentum by more than 10 meV:

 \rightarrow factor 5 in $\Delta m(v)^2_{stat}$ under ideal conditions added value: significant background reduction !

One implementation: reduce pre spectrometer length & add a Project 8-type tagger within a long solenoid or another type of electron tagger

or: Use use tagger-less methods: "gated filter" or "time-focusing time-of-flight"

RF tagger

Hints for a 2nd sterile neutrino: Warm Dark Matter in the universe

ΛCDM (Cold Dark Matter with cosmological constant) models (masses of about 100 GeV) predict to much structure at galactic scales (too many satellite galaxies)

(e.g. Lovell et al. at Meudon Workshop 2012)

In contrast to observations ! (here only artist view on the right)

Warm Dark Matter (masses of a few keV, e.g. sterile neutrinos) would smear out these structures

http://chandra.harvard.edu/graphics/resources/illustrations/ milkyWay/milkyway_magellanic_clouds.jpg

ALL MAGELLANIC CLOUD

Christian Weinheimer

WESTFÄLISCHE WILHELMS-UNIVERSITÄT Search for a tiny kink of a keV neutrino

Main questions:

How to measure this tiny kink a few keV below the endpoint?

> In parallel, in addition or after KATRIN's $m(v_e)$ mission ?

How to fight against the systematics ?

MÜNSTER

Westfälische Wilhelms-Universität Münster

Second gain of integral versus differential: * Avoid many steps in MAC-E-Filter mode

Integral – MAC-E-Filter method

Differential measurement

need many retardation voltages to obtain spectral information need one retardation voltage and other means (TRISTAN-detector, TOF) to obtain spectral information

Statistical sensitivity for integral and differential measurement

S. Mertens et al., JCAP 02 (2015) 020 "Sensitivity of Next Generation Tritium β-Decay Experiments for keV-Scale Sterile Neutrinos"

→ Potential statistical uncertainty is not a problem for 10⁻⁷ even including systematics (1st investigation)!

but would require different measurement strategy

How to search for keV neutrinos with KATRIN: several options

<u>_</u>___

Westfälische Wilhelms-Universität Münster

How to search for keV neutrinos with KATRIN: could be done soon (2017)

Pre-Measurement

How to search for keV neutrinos with KATRIN: optimize for keV sterile v

Post-Measurement

Novel detector design:

- Capability of handling high rates (>10⁹ cnts/s) >10 000 pixel
- High energy resolution (300 eV @ 20 keV)
 - Thin deadlayer (~10 nm)
- Large pixels (~1 mm) with small capacity (<0.2 pF)
 - Multi-drift-ring design (SDD)
- Minimize systematics (ppm-level)
 - Sophisticated read-out*

1.5

TRISTAN detector design simulations 0.4

Depth (mm) 700 800 800

0.0

1.0

Length (mm)

L WESTFÄLISCHE WILHELMS-UNIVERSITÄT MÜNSTER

Avoid smearing by gated-filter: "Time-focusing time-of-flight"

<u>UNSTER</u> Time-focusing at main spectrometer Sine wave 400 kHz, 100 Vpp, U = -18400 V

LineWestfälische
Wilhelms-UniversitätTime-focusing at main spectrometer
sine wave 400 kHz, 100 Vpp, U = -17575 V

Realistic scenario, modulating HV on central wire electrode system

time-focusing energy band just above energy threshold

Westfälische Wilhelms-Universität Münster

Statistical sensitivty of a 163Ho EC experiment (ECHo, HOLMES, NuMECS)

Figure 28: Calculated experimental ¹⁶³Ho EC calorimetric spectrum for Q = 2.8 keV, $\Delta E = 1 \text{ eV}$, for a constant exposure of 10^5 detector×year, and for (top to bottom) $\tau_R = 10 \,\mu\text{s}$, $1 \,\mu\text{s}$, and $0.1 \,\mu\text{s}$ (left). Sensitivity to heavy sterile neutrinos detected from kinks in a ¹⁶³Ho calorimetric spectrum with $Q = 2.8 \,\text{keV}$, $N_{ev} = 3 \times 10^{13}$, $\Delta E = 1 \,\text{eV}$, and $f_{pp} = 3 \times 10^{-4}$. (right).

A. Nucciotti, arXiv:1511.00968

limited by statistics shape is non-trivial below the endpoint

Conclusions

KATRIN is the direct neutrino mass experiment complementary

to cosmological analyses and $0\nu\beta\beta$ searches

- KATRIN will to start direct neutrino mass measurements in 2017
- KATRIN's sensitivity: 200 meV
- KATRIN can also look for sterile neutrinos (eV, keV)

- Is 200 meV the end of direct neutrino mass searches? No!
- significant developments on ¹⁶³Ho micro calorimeters (ECHo, HOLMES, NuMECS)
- new ideas like Project 8, ...
- addition differential methods to KATRIN by TOF, new detectors, ..

keV neutrino search possible with KATRIN, first search will be done in 2017 !

THANK YOU FOR YOUR ATTENTION !)

Christian Weinheimer

20th Paris Cosmology Colloquium 2016