The Inflationary Perturbation Spectrum: Numerical and Analytical Calculations

Andreas Heinen¹

¹Theoretical Physics III University of Dortmund Andreas.HeinenQuni-dortmund.de

DO-TH-04/14, LA-UR-04-8611

9/10 Dec 2004, WMAP and the Early Universe, Paris

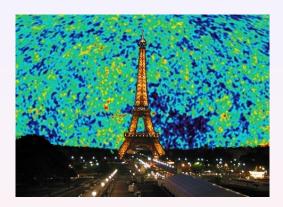
in Collaboration with Salman Habib, Katrin Heitmann, Gerard Jungman (Los Alamos Nat Lab) and Carmen Molina-Paris (U of Leeds)

[1] S.H., K.H., G.J., C.M.-P., Phys. Rev. Lett. 89, 281301 (2002), [2] S.H., A.H., K.H., G.J., C.M.-P., Phys. Rev. D70, 083507 (2004), [3] S.H., A.H., K.H., G.J., to be published, astro-ph/0412xxx

Outline

- General Introduction and calculation of primordial calculations
- 2 The uniform approximation
 - General formalism
 - Leading order expressions with error bounds
 - Improvements and comments on errors
- Results
 - Chaotic inflation
 - Phase transition model
- Summary & Conclusions

Inflation and its imprints in the microwave sky

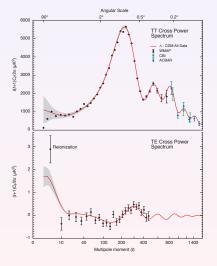


Quantum fluctuations in the very early universe are blown up to astrophysical size (large scale structure)

- Inflation provides a natural mechanism for the generation of perturbations.
- One can constrain inflationary models from cosmic microwave background (CMB) measurements (WMAP, PLANCK,...) and the large scale structure (SDSS, 2dFGRS,...)
- Inflation is testable!
 H. V. Peiris et al., Astrophys. J.
 Suppl. 148, 213 (2003)

Components of the Cosmic Microwave Background

D. N. Spergel et al. [WMAP Collaboration], Astrophys. J. Suppl. 148, 175 (2003)



- Primordial perturbation spectrum (very early universe)
- ② Mixing of matter and radiation in the epoch of recombination, "late" universe → sound waves, anisotropies, . . .

We can only measure the combination

$$C_{\ell} = 4\pi \int \frac{dk}{k} P(k) \Delta_{\ell}^{2}(k) \tag{1}$$

P(k): primordial power spectrum (this talk)

 $\Delta_\ell^2(k)$: transfer function \to today (CMBFAST,...)

Summary of the main theoretical ingredients

Linearized fluctuations in the metric and a background field – single field inflation

V. F. Mukhanov, H. A. Feldman and R. H. Brandenberger, Phys. Rept. 215, 203 (1992)

$$ds^{2} = g_{ab}dx^{a}dx^{b} = a^{2}(\eta)\left[-d\eta^{2} + \gamma_{ij}dx^{i}dx^{j}\right]$$
 (2)

density perturbations $\ \ \rightarrow \ \$ scalar

 $metric \ perturbations \ (gravity \ waves) \quad \rightarrow \quad tensor$

Characterizing quantity: Gauge invariant variable u satisfying the dynamical equation (for scalar perturbations)

$$u_k'' + \left(k^2 - \frac{z''}{z}\right)u_k = 0 \; ; \; z = \frac{a\phi'}{h} \; ; \; h = \frac{a'}{a}$$
 (3)

Background equations for the inflaton field

$$\ddot{\phi}(t) + 3H(t)\dot{\phi}(t) + V'(\phi(t)) = 0 \; ; \; H^2(t) = \frac{1}{3} \left[\frac{1}{2} \dot{\phi}^2(t) + V(\phi) \right] \; .$$
 (4)

The power spectra of cosmological perturbations

Two-point correlations

For Gaussian fluctuations the two-point correlation function encodes all the information needed!

$$\langle 0| u(\eta, \mathbf{x}), u(\eta, \mathbf{y}) |0\rangle = \int_0^\infty \frac{dk}{k} \frac{\sin kr}{kr} P_u(\eta, k) \quad ; \quad r = |\mathbf{x} - \mathbf{y}| \tag{5}$$

Cosmological perturbations

The growing modes (on scales much larger than the Hubble length) build up the perturbation spectrum.

Power spectrum for density perturbations (ζ) and curvature perturbations (g):

$$P_{\zeta}(k) = P_{S}(k) \stackrel{k\eta \to 0^{-}}{=} \frac{k^{3}}{2\pi^{2}} \left| \frac{u_{k}(\eta)}{z(\eta)} \right|^{2}$$
 (6)

$$P_{\zeta}(k) = P_{S}(k) \stackrel{k\eta \to 0^{-}}{=} \frac{k^{3}}{2\pi^{2}} \left| \frac{u_{k}(\eta)}{z(\eta)} \right|^{2}$$

$$\frac{1}{8} P_{g}(k) = P_{T}(k) \stackrel{k\eta \to 0^{-}}{=} \frac{k^{3}}{2\pi^{2}} \left| \frac{v_{k}(\eta)}{a(\eta)} \right|^{2}$$

$$(6)$$

Summary of the characterizing quantities

Power spectra

$$P_{S}(k) \stackrel{k\eta \to 0^{-}}{=} \frac{k^{3}}{2\pi^{2}} \left| \frac{u_{k}(\eta)}{z(\eta)} \right|^{2} (8)$$

$$P_{T}(k) \stackrel{k\eta \to 0^{-}}{=} \frac{k^{3}}{2\pi^{2}} \left| \frac{v_{k}(\eta)}{a(\eta)} \right|^{2} (9)$$

$$P_{\mathcal{T}}(k) \stackrel{k\eta \to 0^{-}}{=} \frac{k^{3}}{2\pi^{2}} \left| \frac{v_{k}(\eta)}{a(\eta)} \right|^{2} (9)$$

Ratio of tensor to scalar perturbations

$$R(k) = \frac{8P_T(k)}{P_S(k)} \tag{10}$$

Spectral indices

$$n_{S}(k) = 1 + \frac{d \ln P_{S}(k)}{d \ln k} (11)$$

$$n_{T}(k) = \frac{d \ln P_{T}(k)}{d \ln k} (12)$$

$$n_T(k) = \frac{d \ln P_T(k)}{d \ln k} \qquad (12)$$

Running of the spectral indices

$$\alpha_S(k) = \frac{d \ln n_S(k)}{d \ln k} \quad (13)$$

$$\alpha_{S}(k) = \frac{d \ln n_{S}(k)}{d \ln k} \quad (13)$$

$$\alpha_{T}(k) = \frac{d \ln n_{T}(k)}{d \ln k} \quad (14)$$

Precision calculation of P(k)?

Important requirements

- The errors in the calculation of the primordial perturbation spectra should be much smaller than the "cosmic variance".
- ② The errors should be comparable to (or smaller) the present $\sim 0.1\%$ errors in the calculation of the transfer functions.

CMBFAST: http://www.cmbfast.org; U. Seljak and M. Zaldarriaga, Astrophys. J. 469, 437 (1996); U. Seljak, N. Sugiyama, M. White and M. Zaldarriaga, Phys. Rev. D 68, 083507 (2003)

Numerical calculations

- The only method reliable in the general case
- Numerically too expensive for model testing/parameter studies
- Only useful for spot-checking

The standard slow-roll expansion (and problems)

Features

Expansion in terms of slow-roll parameters

$$\epsilon = -\frac{\dot{H}}{H^2} = \frac{1}{2} \frac{\dot{\phi}^2}{H^2} \quad ; \quad \delta_n = \frac{1}{H^n \dot{\phi}} \frac{d^{n+1} \phi}{dt^{n+1}}$$
(15)

- E.g. scalar spectral index to first order: $n_S = 1 4\epsilon 2\delta_1$
- Numerically cheap → quick tests → Precision? Error control?
- Good, if the dynamics is completely friction dominated . . .
- Derivative expansions in terms of V, V'', V''' etc. can be dangerous (convergence?)
- Obtaining higher orders? (Bessel function approach needs a constant inhomogeneity)

Outline

- General Introduction and calculation of primordial calculations
- 2 The uniform approximation
 - General formalism
 - Leading order expressions with error bounds
 - Improvements and comments on errors
- Results
 - Chaotic inflation
 - Phase transition model
- 4 Summary & Conclusions

The uniform approximation – general formalism

Liouville-Green (LG) and Wentzel-Kramers-Brillouin (WKB) approximations

```
Green (1837), Liouville (1837), R.E. Langer (1931, 1932, 1935, . . . 1949)

Cosmological perturbations: J. Martin and D. J. Schwarz, Phys. Rev. D 67, 083512
```

(2003); P. Hunt and S. Sarkar, arXiv:astro-ph/0408138; R. Casadio, F. Finelli, M. Luzzi and G. Venturi, arXiv:gr-qc/0410092

Uniform approximations

 Better treatment of the turning points, "uniformization" of the LG approximation and error control

```
R.E. Langer (1931, 1932, 1935, ... 1949), F.W.J. Olver, Philos. Trans. R. Soc. A 247, 307 (1954); Asymptotics and Special Functions, (AKP Classics, Wellesley, MA 1997)
```

```
Cosmological perturbations: S. Habib, K. Heitmann, G. Jungman, C. Molina-Paris, Phys.
```

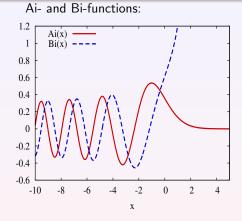
 $\text{Rev. Lett. 89, 281301 (2002); S.H., } \underline{A.H., } \text{ K.H., } \text{G.J., } \text{C. M.-P., } \text{Phys. Rev. } \textbf{D70}, \text{ 083507 (2004); } \\$

S.H., A.H., K.H., G.J., to be published, astro-ph/0412xxx



Features of the uniform solutions

- Solutions in terms of Airy functions
- General error control theory \rightarrow error bounds for u_k , P(k), n(k) etc.
- No matching at the turning point \rightarrow no loss of precision
- Arbitrary high orders possible (typically not needed)



The fundamental quantity is the turning point $k^2=\nu^2(\bar{\eta})/\bar{\eta}^2$. Solutions ">" with $\eta>\bar{\eta}$ (relevant for the perturbation spectrum) and "<" with $\eta<\bar{\eta}$.

Outline

- General Introduction and calculation of primordial calculations
- 2 The uniform approximation
 - General formalism
 - Leading order expressions with error bounds
 - Improvements and comments on errors
- Results
 - Chaotic inflatior
 - Phase transition model
- 4 Summary & Conclusions

Leading order expressions in terms of Airy functions

Unnormalized solutions (scalar perturbations)

$$u_{k,\leqslant}^{(1)}(\eta) \propto \operatorname{Ai}[f_{\leqslant}(k,\eta)]$$
 (16)

$$u_{k,\leqslant}^{(2)}(\eta) \propto \mathbf{Bi}[f_{\leqslant}(k,\eta)]$$
 (17)

with

$$f_{\leq}(k,\eta) = \mp \left\{ \pm \frac{3}{2} \int_{\eta}^{\bar{\eta}_S} d\eta' \left[\mp g_S(k,\eta') \right]^{\frac{1}{2}} \right\}^{\frac{2}{3}}$$
 (18)

$$g_{S}(k,\eta) = \frac{\nu_{S}^{2}(\eta)}{\eta^{2}} - k^{2},$$
 (19)

$$\nu_{\rm S}^2 = (z''/z)\eta^2 + 1/4$$
; $\nu_{\rm T}^2 = (a''/a)\eta^2 + 1/4$. (20)

Note: The term $-\frac{1}{4\eta^2}$ is extracted to make the uniform approximation convergent.

The solutions have error bounds \rightarrow error bands

Simple estimate for the error bound of u_{\leq}

... from a local expansion around the turning point:

$$|\epsilon_{k,1,\leq}| \leq 2\sqrt{2} \left(\frac{1}{6\bar{\nu}_{\mathcal{S}}(k)} + \frac{\lambda}{72\bar{\nu}_{\mathcal{S}}^2(k)} + \cdots \right) .$$
 (21)

 $\lambda \simeq 1.04$

S. Habib, A.H., K. Heitmann, G. Jungman, to be published, astro-ph/0412xxx

For the full error control function see:

S. Habib, A.H., K. Heitmann, G. Jungman, C. Molina-Paris, Phys. Rev. D70, 083507 (2004)

The leading order power spectrum and spectral index

Leading order power spectra in the Liouville-Green regime

$$P_{1,S}(k) = \lim_{k\eta \to 0^{-}} \frac{k^{3}}{4\pi^{2}} \frac{1}{|z(\eta)|^{2}} \frac{-\eta}{\nu_{S}(\eta)} \exp\left\{\frac{4}{3} \left[f_{>}(k,\eta)\right]^{3/2}\right\} \times (1 + \epsilon_{k,1,S}^{P})$$
(22)

$$\epsilon_{k,1,S}^{P} = 2\epsilon_{k,1,S,\lessgtr} + \epsilon_{k,1,S,\lessgtr}^{2}$$
 (23)

Leading order spectral indices with inverse square root singularities

$$n_{1,S}(k) = 4 - 2k^2 \lim_{k\eta \to 0^-} \int_{\bar{\eta}_S}^{\eta} \frac{d\eta'}{\sqrt{g_S(k,\eta')}} + \epsilon_{k,1,S}^n.$$
 (24)

$$\epsilon_{k,1,S}^{n} = \frac{d \ln \epsilon_{k,1,S}^{P}}{d \ln k} \tag{25}$$

Analog in the tensor case $(\nu_S \rightarrow \nu_T \text{ and } z \rightarrow a)$.

Analytical solutions for power-law inflation – constant ν

Some exponential potentials are analytically solvable

$$V(\phi) = V_0 \exp\left(\sqrt{\frac{2}{p}}\,\phi\right) \quad ; \quad a(t) \propto t^p \quad ; \quad H(t) = pt^{-1}$$
 (26)

see e.g., E. Lidsey et al. Rev. Mod. Phys. 69, 373 (1997)

The exact power spectrum is proportional to a Γ -function

$$P_S^{\text{ex}}(k) = \frac{2^{2\nu_S - 2}}{2\pi^3} \Gamma^2(\nu_S) \left(\frac{H}{a\dot{\phi}}\right)^2 (-k\eta)^{1 - 2\nu_S} k^2 \tag{27}$$

$$\nu_S = \nu_T = \frac{3}{2} + \frac{1}{p-1} \tag{28}$$

$$n_S = 4 - 2\nu_S \; ; \; n_T = n_S - 1$$
 (29)

- No running of the spectral index
- ② Harrison-Zeldovich $n_S = 1$ corresponds to $p = \infty$

LO and NLO uniform power spectra for power-law inflation

LO:
$$P_S^{(1)}(k) = \frac{2^{2\nu_S - 2}}{\pi^2} e^{-2\nu_S} \nu_S^{2\nu_S - 1} \left(\frac{H}{a\dot{\phi}}\right)^2 (-k\eta)^{1 - 2\nu_S} k^2 (30)$$

$$n_S^{(1)}(k) = 4 - 2\nu_S (31)$$

NLO:
$$P_S^{(2)}(k) = P_S^{(1)}(k) \left(1 + \frac{1}{6\nu_S}\right)$$
 (32)

$$n_S^{(2)}(k) = n_S^{(1)}(k)$$
 (33)

Important notes about the uniform approximation

- The spectral indices are already exact in leading order!
- ② The Ratio R of tensor to scalar perturbations is exact!
- Order by order expanded the uniform approximation reproduces the Γ-function (Stirling formula):

$$\Gamma^{2}(\nu) \rightarrow \left(\underbrace{1}_{LO} + \underbrace{\frac{1}{6\nu}}_{NNO} + \underbrace{\frac{1}{72\nu^{2}}}_{NNO} + \cdots\right) =: \gamma(\nu)$$
 (34)

Outline

- General Introduction and calculation of primordial calculations
- 2 The uniform approximation
 - General formalism
 - Leading order expressions with error bounds
 - Improvements and comments on errors
- Results
 - Chaotic inflation
 - Phase transition model
- 4 Summary & Conclusions

Do I have to improve the leading order approximation?

Question: How do I know if I have to improve my approximation?

Answer: There is an error bound! If the error bound is much bigger than your desired accuracy you have to improve something (\rightarrow next order)

 \Downarrow Too lazy to calculate the full next-to-leading order? \Downarrow

Idea: Utilize the results from the power-law case in order to improve the spectra of the leading order very simply!

Definition of improved power spectra

Define improved leading order power spectra

$$\tilde{P}_{1,S}(k) = P_{1,S}(k)\gamma[\bar{\nu}_S(k)] ; \tilde{P}_{1,T}(k) = P_{1,T}(k)\gamma[\bar{\nu}_T(k)]$$
 (35)

$$\tilde{n}_{1,S}(k) = n_{1,S}(k) + \frac{d \ln \gamma[\bar{\nu}_S(k)]}{d \ln k}$$
 (36)

Part of the Γ -function with ν at the turning point \rightarrow all local contributions from the non-local integrals of the higher orders

S. Habib, A.H., K. Heitmann, G. Jungman, to be published, astro-ph/0412xxx

Notes about the size of the correction

Bigger correction to the amplitude of the power spectrum

$$\gamma[\bar{\nu}_S(k)] \approx \epsilon_{k,1,S}^P$$
 (37)

Small correction to the spectral index

$$\frac{d \ln \gamma [\bar{\nu}_S(k)]}{d \ln k} \ll \epsilon_{k,1,S}^n \tag{38}$$

Errors to be expected in the uniform approximation

Quanti	ty LO	improved LO	NLO
P(k)	$\sim 10\%$	< 1%	$\sim 0.5\%$
n(k)	< 0.1%	< 0.1%	$\ll 0.1\%$
R(k)	$\sim 1\%$	$\sim 0.1\%$	< 0.1%

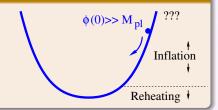
Outline

- Results
 - Chaotic inflation

The models

Chaotic inflation with $V(\phi) \sim \phi^n$

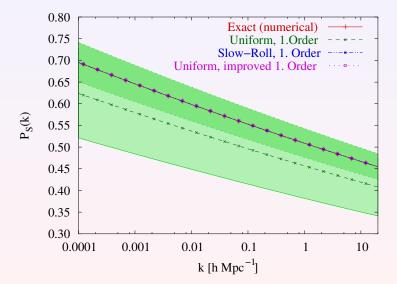
- ϕ^2 possible
- ϕ^4 under strong pressure from observations
- ϕ^n with n > 5 excluded



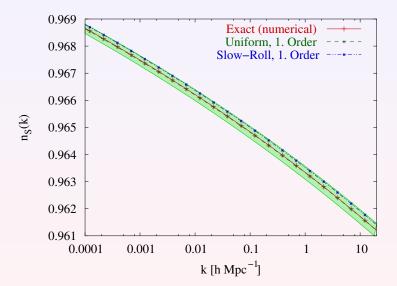
Features

- Slow-roll dominated dynamics \rightarrow slow-roll expansion expected to work good for $m^2\phi^2$ potential (small n)
- $n_S < 1$, $n_T \neq n_S 1$

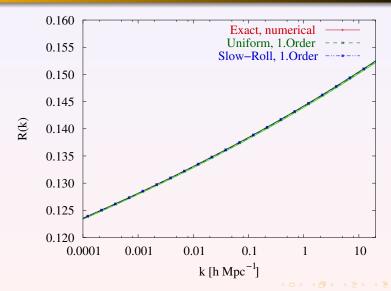
$m^2\phi^2$ chaotic inflation model – scalar power spectrum



$m^2\phi^2$ chaotic inflation model – scalar spectral index



$m^2\phi^2$ chaotic inflation model – ratio of tensor to scalar perturbations



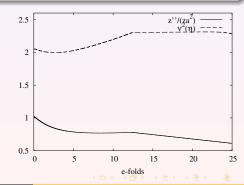
Outline

- General Introduction and calculation of primordial calculations
- The uniform approximation
 - General formalism
 - Leading order expressions with error bounds
 - Improvements and comments on errors
- Results
 - Chaotic inflation
 - Phase transition model
- 4 Summary & Conclusions

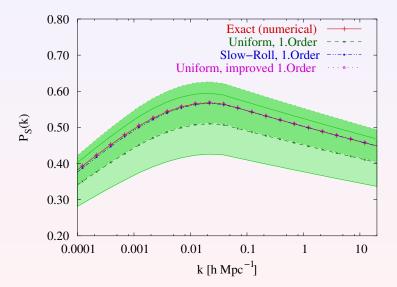
$V_{>}(\phi) = \frac{1}{4}m^{2}\phi_{*}^{2}(\alpha - 1) + \frac{2}{3}m^{2}\phi_{*}(1 - \alpha)\phi + \frac{1}{2}\alpha m^{2}\phi^{2} + \frac{1}{12\phi_{*}^{2}}m^{2}(1 - \alpha)\phi^{4}$ (39)

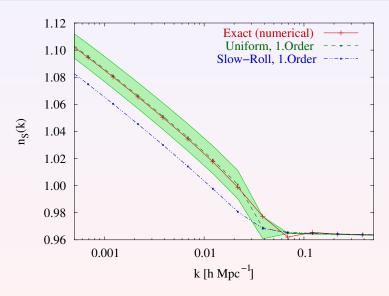
$$V_{<}(\phi) = \frac{1}{2}m^2\phi^2 \tag{40}$$

- $V_{>}(\phi_{*}) = V_{<}(\phi_{*}),$ • $V'_{>}(\phi_{*}) = V'_{<}(\phi_{*}),$ • $V''_{>}(\phi_{*}) = V''_{<}(\phi_{*}),$ • $V'''_{>}(\phi_{*}) \neq V'''_{>}(\phi_{*}).$
- $\phi > \phi_*$ "fast"-roll, $\phi < \phi_*$ slow-roll

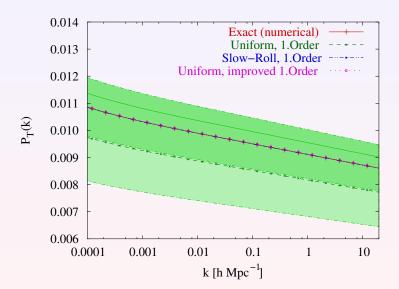


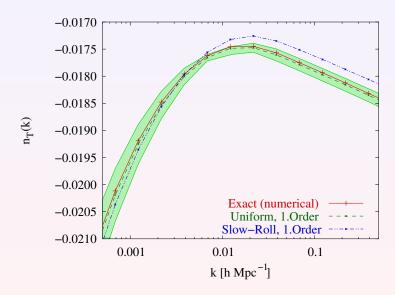
Scalar power spectrum





Tensor power spectrum





Summary & Conclusions

Summary & Conclusions

- Side-effect: We have developed an improved numerical mode-by-mode integration code (faster and more precise with the help of the uniform approximation)
- Leading order uniform approximation gives simple expressions in terms of integrals
- With a simple improvement of the leading order uniform approximation a general accuracy $\ll 1\%$ can be achieved, the spectral indices, the running and the tensor to scalar ratio being excellent already without the improvement.

Outlook

- Make the codes public available (with an interface to CMBFAST).
- Large parameter studies with plenty of inflation models

Thank you for your attention!

This presentation has been made with help of the LATEX package **beamer**. See http://latex-beamer.sourceforge.net

