Isocurvature Modes after WMAP-1styr

Paris, 9 December 2004

Julien Lesgourgues (LAPTH, Annecy, France)

collaborations with : M. Beltran, J. Garcia-Bellido (Madrid)

A.. Riazuelo (IAP), P. Crotty (ex-LAPTH)

1) isocurvature modes:

what are they?
how can they be generated?
how do they affect CMB and LSS?

2) observational constraints all modes together adiabatic mode plus one isocurvature mode more specific models

various perfect fluids with no energy exchanges (e.g.

$$p_i = w_i \rho_i \quad , \quad \rho_i \propto n_i^{1+w_i}$$

concarvation of number density

$$n_i \mathcal{V} = \operatorname{cst} \quad \Leftrightarrow \quad \dot{n}_i = -3Hn_i \quad \Leftrightarrow \quad \dot{\rho}_i = -3H(\rho_i + p_i)$$

true also LOCALLY (flat slicing gauge, uniform H)

> conserved quantity on super Hubble scales:

$$rac{\delta n_i}{n_i} = rac{\delta
ho_i}{
ho_i + p_i} \qquad (= \delta_m \; ext{ or } \; rac{3}{4} \delta_r) \qquad ext{Wands et al. 00}$$

Wands & Lyth

generation from decay of single field

$$\forall i, \quad \frac{\delta n_i}{n_i} = \frac{\delta \rho_i}{\rho_i + p_i} = \xi(x)$$

⇒ multi-fluid is adiabatic :

$$\begin{split} \delta\rho(x,t) &= \sum_{i} \delta\rho_{i}(x,t) = \xi(x) \sum_{i} (\rho_{i}(t) + p_{i}(t)) \\ \delta p(x,t) &= \sum_{i} w_{i} \delta\rho_{i}(x,t) = \xi(x) \sum_{i} w_{i} (\rho_{i}(t) + p_{i}(t)) \\ \frac{\delta\rho}{\delta p} &= \frac{\sum_{i} w_{i} (\rho_{i} + p_{i})}{\sum_{i} (\rho_{i} + p_{i})} = c_{s}^{2}(t) \end{split}$$

conservation of curvature perturbation R (comoving gauge)

(or Φ excepted during reheating and equality)

general case:

$$S_{ij} = \frac{\delta n_i}{n_i} - \frac{\delta n_j}{n_j} = \frac{\delta \rho_i}{\rho_i + p_i} - \frac{\delta \rho_j}{\rho_j + p_j}$$

- → not adiabatic : ENTROPY PERTURBA gauge independent
- \Rightarrow initial conditions (i.c.) specified by δ_r and $S_{i\gamma}$
- \Rightarrow if $\delta_r = 0$: no curvature perturbation R when a $\rightarrow 0$

pure ISOCURVATURE perturbations

 \Rightarrow i.c. generally specified by R $_{(a \rightarrow 0)}$, S_{CDI}, S_{BI}, S_{NI}

Efstathiou & Bond 86; Peebles 87; Kodama & Sasaki 80

⇒ extended set of isocurvature mode§ucher et al. 2001

perturbations of : baryons, d.o.f

CDM, tighly coupled photons

1 independent

(density)

infinite hierarchy of

free-streaming neutrinos: Legendre momenta

(density, velocity, shear...)

additional isocurvature mode from $\mathbf{v}_{v} \leftrightarrow \mathbf{v}_{\gamma}$: « v velocity »

set of initial conditions (if only one isocurvature

$$\Delta_{\mathcal{R}}^2(k) \equiv \frac{k^3}{2\pi^2} \langle \mathcal{R}^2 \rangle = A^2 \left(\frac{k}{k_0}\right)^{n_{\text{ad}}-1}$$

$$\Delta_{\mathcal{S}}^2(k) \equiv \frac{k^3}{2\pi^2} \langle \mathcal{S}^2 \rangle = B^2 \left(\frac{k}{k_0}\right)^{n_{\rm iso}-1}$$

$$\Delta_{\mathcal{RS}}^2(k) \equiv \frac{k^3}{2\pi^2} \langle \mathcal{RS} \rangle = A B \cos \Delta_{k_0} \left(\frac{k}{k_0}\right)^{n_{\text{cor}} + \frac{1}{2}(n_{\text{ad}} + n_{\text{iso}}) - 1}$$

S being CDI, BI, NID or NIV

evaluated just after BBN, on super-Hubble scales

How can they be generated?

1) multiple inflation : more than one light field (m<H) ϕ_2

- ⇒ fields develop ≠ perturbation spectra Polarski & due to ≠ effective masses (and couplings) Wands et al.
- → reheating: one field → all species (S_{ij}=0) but one
- → later : other field → one species uncoupled with correl. others

Isocurvature modes do not survive to thermalizati

e.g., for neutrinos : thermal equilibrium down to a few MeV decay into v after BBN, QR large chemical potential

DIFFICULTY TO BUILD REALISTIC SCENARIOS! (axion? right-handed sneutrino → baryons?...)

⇒ fields develop ≠ pe
due to ≠ effective

ctra Polarski & plings) Wands et al.

- → reheating: one field → a species (S_{ii}=0) but one
- ⇒ later: other field → one species uncoupled with others

1

How can they be generated?

1) multiple inflation: more than one light field (m<H)

TWO WAYS TO GENERATE THE ADIABATIC MODE:

⇒ perturbations in conventional scenario:

inflaton 1 — reheating → adiabatic

inflaton 2 — decay → isocurvature → ANY CORR.

How can they be generated?

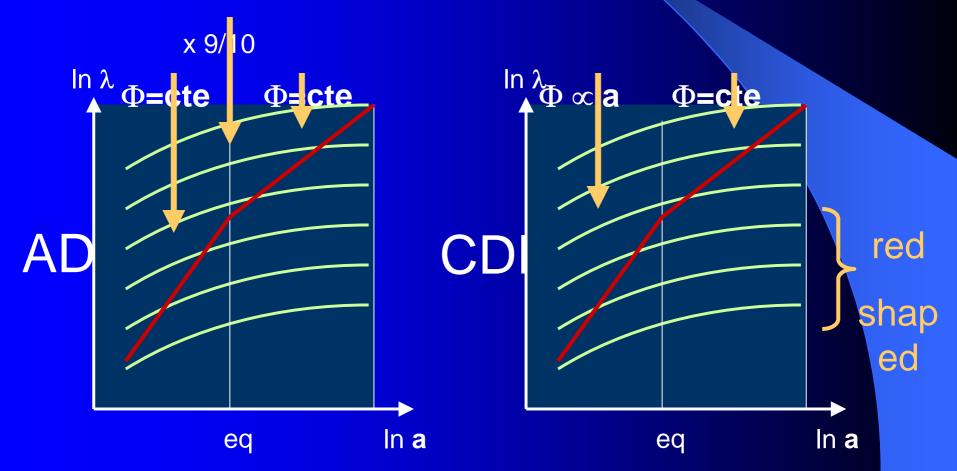
1) Topological defects, magnetic fields:

active mechanisms, no phase-coherent acoustic oscillations ...

... another story

(limited amplitude anyway!!!)

1) adiabatic versus CDI: super-Hubble behavior of Φ

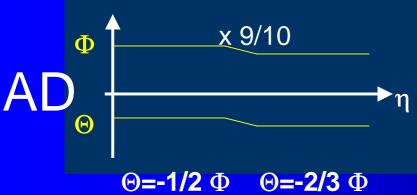


1) adiabatic versus CDI: Sachs-Wolfe effect (approximated)

isotropic temperature fluctuation : Θ

early integrated Sachs-Wolfe : $\Theta' = \Phi'$

observed Sachs-Wolfe temperature : $[\Theta+\Phi](\eta_*)$



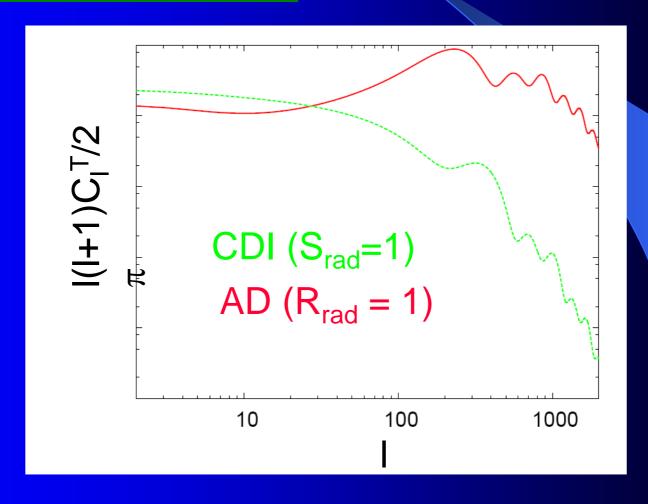
$$CDI \xrightarrow{\Theta = \Phi} \eta$$

$$[\Theta + \Phi](\eta_*) = 1/3 \Phi(\eta_*)$$

$$[\Theta + \Phi](\eta_*) = 2 \Phi(\eta_*)$$

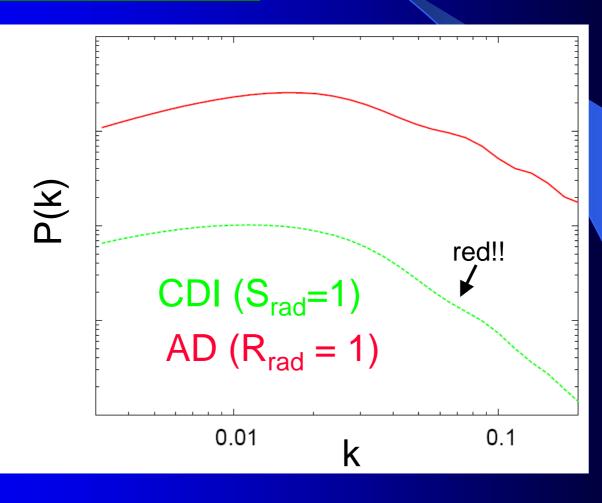
FACTOR 6 DIFFERENCE !!!

1) adiabatic versus CDI: spectra for n_{ad}=n_{iso}=1

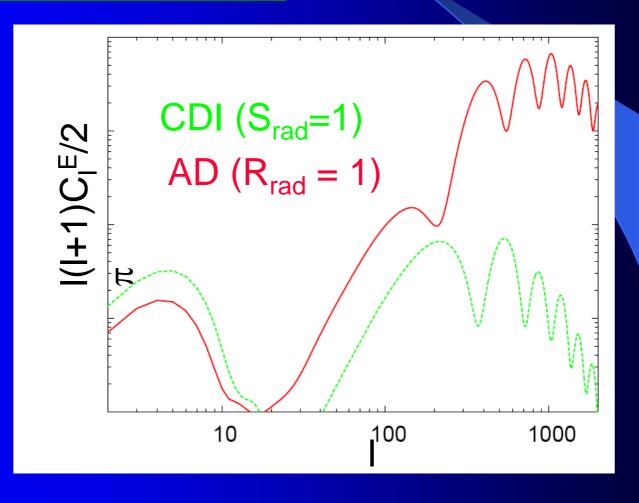


1) adiabatic versus CDI: spectra for n_{ad}=n_{iso}=1

difference
e
« killed »
PIB
model
in ~92



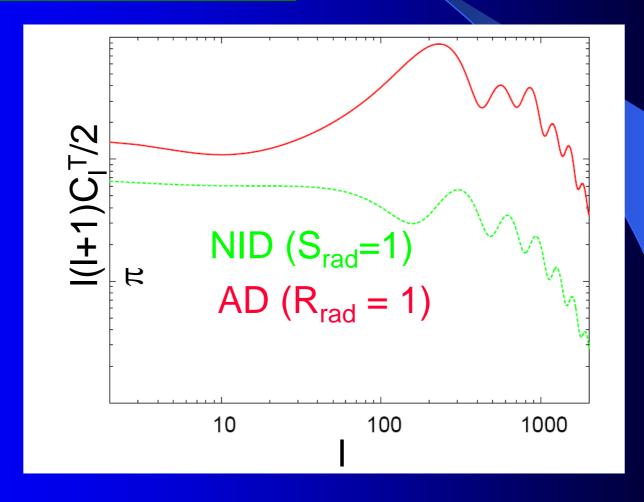
1) adiabatic versus CDI: spectra for n_{ad}=n_{iso}=1



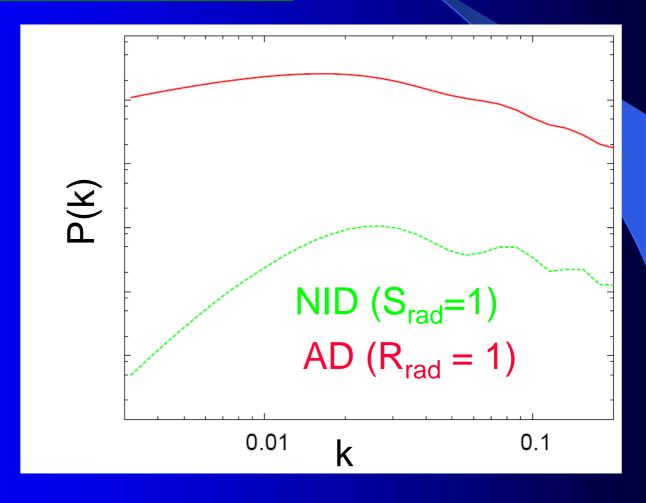
2) adiabatic versus BI :

same as CDI (rescaling by Ω_b/Ω_{cdm}) !!!

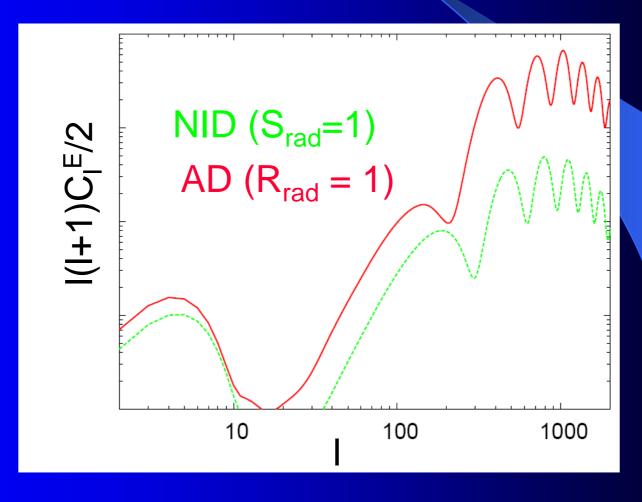
3) adiabatic versus NID : spectra for n_{ad}=n_{iso}=1



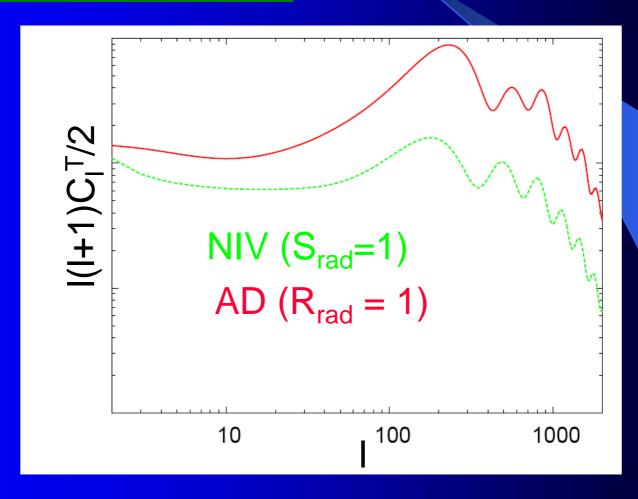
3) adiabatic versus NID : spectra for n_{ad}=n_{iso}=1



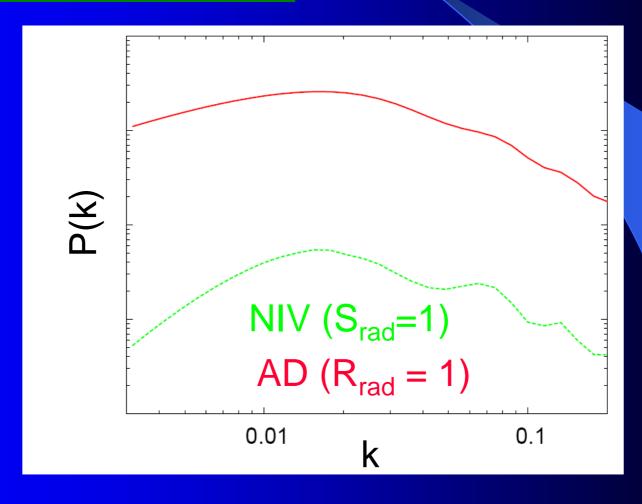
3) adiabatic versus NID : spectra for n_{ad}=n_{iso}=1



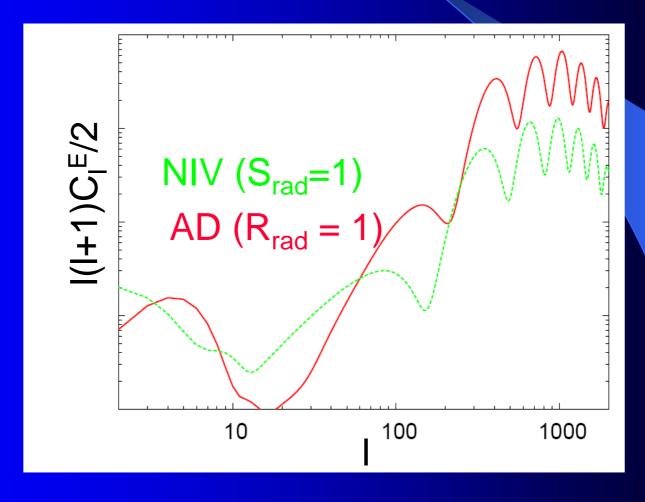
4) adiabatic versus NIV: spectra for n_{ad}=n_{iso}=1



4) adiabatic versus NIV: spectra for n_{ad}=n_{iso}=1



4) adiabatic versus NIV : spectra for n_{ad}=n_{iso}=1



various complementary approaches:

- 1) all 4 modes together:
 - « how far away from ∧CDM can we go, disregarding the level of realism of the model?

Bucher et al. 03; Moodley et al. 04;

- 2) one isocurvature + adiabatic :
 - « what are the specific bounds for a next-to-minimal set of initial conditions ?»

Peiris et al. 03; Valiviita & Muhonen 03; Crotty et al. 03; Moodley et al. 04; Beltran et al. 04;

more specific studies assuming a precise model:

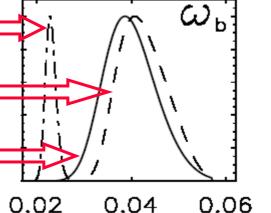
- 1) all 4 modes together: Bucher et al. 03; Moodley et al. 04;
- start from 4x4 matrix of arbitrarily correlated modes
- restricted to n_{ad}=n_{iso}, n_{cor}=0 (theoretically, motivated only within curvaton scenario for which there is full correlation)
- no statistically significant departure from adiabatic:
 - AD+CDI+NID : $\Delta \chi^2$ =-1 for 5 extra parameters
 - AD+CDI+NIV: $\Delta \chi^2 = -1$ for 5 "

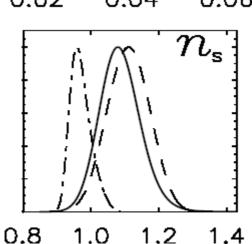
all 4 modes together: **Bucher et al. 03; Moodley** et al. 04;

1.4 0.0

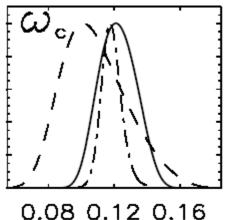
AD **MIXED** (CMB)

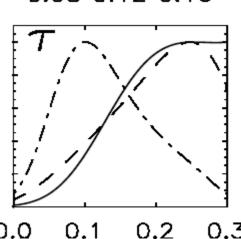
MIXED (CMB+GRS)



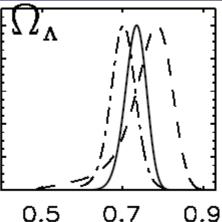


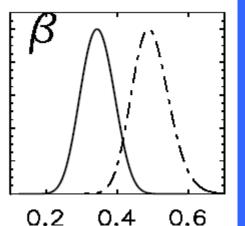
1.0





0.3





1) one isocurvature + adiabatic : (with cross-correlation)

paper	mode	tilts	data
Peiris et al.	CDI	2 (n _{ad} , n _{is})	CMB+GRS (bias)
Valiviita et al.	CDI	3 (n _{ad} , n _{is} , n _{cor})	WMAP
Moodley et al.	CDI, NID, NIV	1 (n _{ad} =n _{is})	CMB+GRS
Crotty et al.	CDI, NID, NIV	2 (n _{ad} , n _{is})	CMB+GRS
Beltran et	CDI, NID, NIV	3 (n _{ad} , n _{is} , n _{cor})	CMB+GRS

2) one isocurvature + adiabatic :

two technical sources of ambiguity:

in the parametrization (inherent to Baysian analysis especially when extra parameters are not required)

ex: analysis with f_{iso}, f_{iso}², 1/f_{iso} give different results (different priors)

same problem with correlation parameters, isocurvature tilts

⇒ in the pivot scale :

amplitudes defined at one particular scale (usually

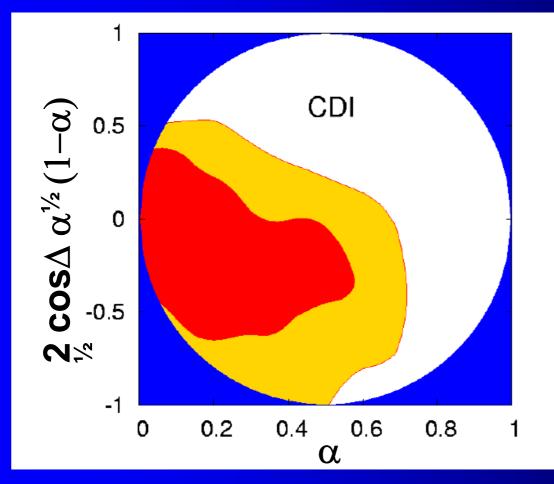
- 2) one isocurvature + adiabatic :
- two usual parametrization of amplitudes at

$$C_l = \mathcal{R}_{\rm rad}^2 \left[C_l^{\rm ad} + f_{\rm iso}^2 C_l^{\rm iso} + 2f_{\rm iso} \cos \Delta C_l^{\rm cor} \right]$$
$$= A^2 \left[(1 - \alpha)C_l^{\rm ad} + \alpha C_l^{\rm iso} + 2\sqrt{\alpha(1 - \alpha)} \cos \Delta C_l^{\rm cor} \right]$$

(C_I normalized to R_{rad} and/or $S_{rad} = 1$)

 \Rightarrow s $|\cos \Delta| (k/k_0)^{n_{
m cor}} \le 1$ nstraint : on range of interest

2) one isocurvature + adiabatic :



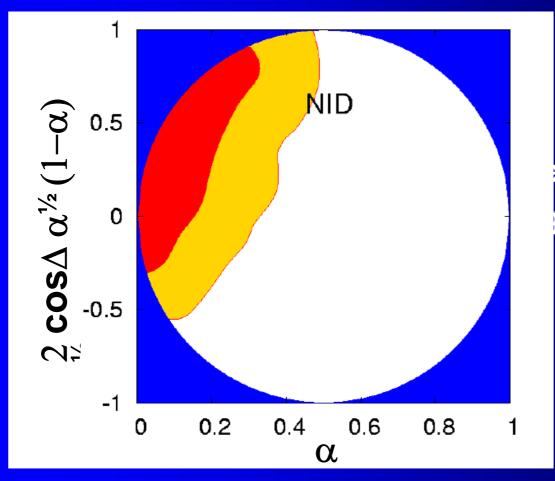
 α < 0.6 (2 σ)

arger than WMAP:

ra tilt n_{cor}

small scale P(k)

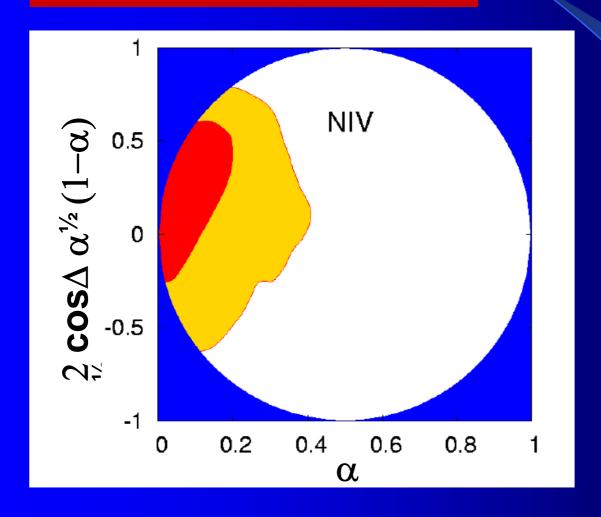
2) one isocurvature + adiabatic :



 α < 0.4 (2 σ)

efers correlated (ative contribution)

2) one isocurvature + adiabatic :

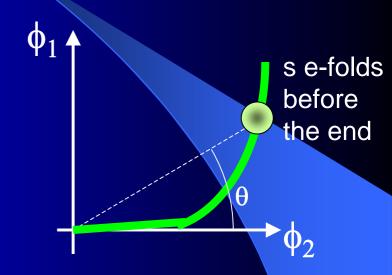


 α < 0.3 (2 σ)

- 2) one isocurvature + adiabatic:
- implications for slow-roll double inflation

$$V = \frac{1}{2} m_1^2 \phi_1^2 + \frac{1}{2} m_2^2 \phi_2^2$$

$$R = m_1 / m_2 > 1$$



 $\{\alpha, \beta, \cos\Delta, n_{ad}, n_{is}, n_{cor}\}\$ functions of $\{R, \theta_k, s\}$

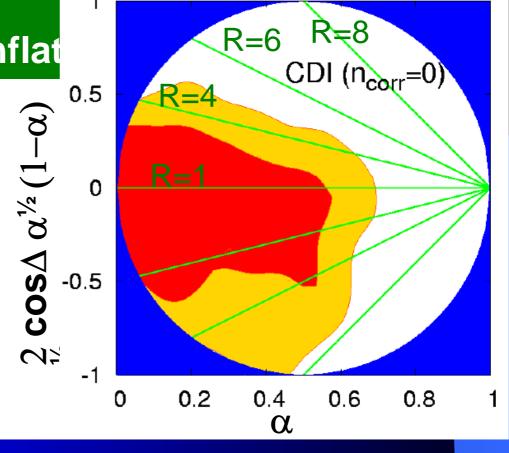
$$2\beta\sqrt{\alpha(1-\alpha)} = \frac{R^2 - 1}{s_k/2} (1-\alpha)$$

n_{cor}≈ **0 and**

2) one isocurvature + adiabatic:

implications for slow-roll double inflat

R < 5 (2 σ)



- 3) specific cases: curvaton scenario
- without large lepton asymmetry:
 Lewis 03
 curvaton
 radiation
 baryons? CDM?
 Gordon &
 correlated CDI? BI
 ?
- \Rightarrow curvaton decays before CDM/n_B creation adiabatic when Ω_{cur} =1
- bounds on Ω_{cur} at decay from S_{CDI}, S_{BI}, f_{NL} bounds

- 3) specific cases: curvaton scenario
- with large lepton asymmetry:

 Malik 04

 curvaton

 radiation

 neutrinos?

 Gordon &

 Correlated NID ?

 (induced CDI, BI)
- \Rightarrow curvaton decays before n_L creation adiabatic when $\Omega_{cur}=1$
- \Rightarrow bounds on Ω_{cur} at decay from S_{NID} , f_{NL} bounds

3) specific cases: miscellaneous

Lazarides, Ruiz de Austri & Trotta 04

- particle-physics motivated model:
 - Hybrid inflation with GUT + Peccei-Quinn
 - 1 inflaton + 1 curvaton (Peccei-Quinn field)
- ⇒ « Mixed conventional + curvaton » scenario

Parkinson, Tsujikawa, Bassett, Amendola 04

specific hybrid inflation model with CDI and tilt

$$V = \frac{\lambda}{4} \left(\chi^2 - \frac{M^2}{\lambda} \right)^2 + \frac{1}{2} g^2 \phi^2 \chi^2 + \frac{1}{2} m^2 \phi^2$$

Conclusions

- 1) NO EVIDENCE FOR ISOCURVATURE MODES
- 2) FUTURE DETECTION OF SMALL CONTRIBUTION STILL POSSIBLE

3) E-POLARIZATION SPECTRA VERY USEFUL

Conclusions

- 1) NO EVIDENCE FOR ISOCURVATURE MODES
- 2) FUTURE DETECTION OF SMALL CONTRIBUTION STILL POSSIBLE
- 3) E-POLARIZATION SPECTRA VERY USEFUL

WHEN ???