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Abstract: We provide a quantum unifying picture for black holes of all masses and

their main properties covering classical, semiclassical, Planckian and trans-Planckian

gravity domains: Space-time, size, mass, vacuum (”zero point”) energy, tempera-

ture, partition function, density of states and entropy. Novel results of this paper

are: Black hole interiors are always quantum, trans-Planckian and of constant

curvature: This is so for all black holes, including the most macroscopic and as-

trophysical ones. The black hole interior trans-Planckian vacuum is similar to the

earliest cosmological vacuum which classical gravity dual is the low energy gravity

vaccum: today dark energy. There is no singularity boundary at r = 0, not at any

other place: The quantum space-time is totally regular. The quantum Penrose

diagram of the Schwarschild-Kruskal black hole is displayed. The complete black

hole instanton (imaginary time) covers the known classical Gibbons-Hawking in-

stanton plus a new central highly dense quantum core of Planck length radius and

constant curvature. The complete partition function, entropy, temperature, decay

rate, discrete levels and density of states all include the trans-Planckian domaine.

The semiclassical black hole entropy (the Bekenstein-Hawking entropy)(
√
n)2 ”inter-

polates” between the quantum point particle (QFT) entropy (n) and the quantum

string entropy
√
n, while the quantum trans-Planckian entropy is 1/(

√
n)2. Black

hole evaporation ends as a pure (non mixed) quantum state of particles, gravitons

and radiation.
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I. INTRODUCTION AND RESULTS

Quantum theory is more complete than classical theory and tells us what values physical

observables should have.

Planckian and trans-Planckian domains are theoretically allowed, physically motivated too,

such as the very early stages of the universe, as well as the last stages of black hole

evaporation, and the black hole interiors too as we show here. Quantum eras in the far

past universe are trans-Planckian and determine the post-Planckian eras, e.g. inflation and

the cosmological vacuum energy until today dark energy Refs [1], [2], [3], [4]

Starting from quantum theory to reach the Planck scale and the trans-Planckian domain

(instead of starting from classical gravity by quantizing general relativity) reveals novel

results, ”quantum relativity” and quantum space-time structure [2], [3], [4]. The space-time

coordinates can be promoted to quantum non-commuting operators: comparison to the

harmonic oscillator and global phase space structure is enlighting, the hyperbolic quantum

space-time structure generates the quantum light cone due to the relevant [X,T ] non-zero

conmutator and a new quantum vacuum region beyond the Planck scale emerges.

The space-time coordinates in the Planckian and trans-Planckian domain are no longer

commuting, but they obey non-zero commutation relations: The concept of space-time is

replaced by a quantum algebra. The classical space-time is recovered when the quantum

operators are the classical space-time continumm coordinates (c-numbers) with all

commutators vanishing.

In this paper we investigate the black hole interiors, its structure and physical

properties, with Planckian and trans-Planckian physics, classical-quantum gravity duality

and quantum space-time in this context.

One of the novel results of this paper is that quantum physics is a inherent constituent of

all black hole interiors, from the horizon to the center, in particular inside the most larger

and astrophysical black holes. The results of this paper have thus implications for both

quantum theory and gravity and the searching of quantum gravitational signals, for

e-LISA [6] for instance, after the success of LIGO [7],[8]. Not only for ”quantum black

holes”, black hole evaporation and its last state huge emissions but for macroscopic

astrophysical black holes.
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As we discuss in Section II, a full complete quantum theory of gravity should be a finite

theory (which is more than a renormalizable theory): The renormalization procedure

applies for the non-complete theories in the Wilsonian sense [9], because they are valid in

an own limitated range of validity, and such known theories are not complete at the Planck

scale and the trans-Planckian domain.

This framework provides in particular the gravitational entropy and temperature in the

quantum trans-Planckian domaine, that is to say the extension to this domaine of the

Bekenstein-Hawking entropy and Hawking temperature which are semiclassical gravity

magnitudes. Interestingly, this approach applies to cosmology too and allows a clarification

of the cosmic vacuum energy or cosmological constant Refs [1], [2], [3]: The quantum (ΛQ)

and classical (Λ) cosmological vacuum energy values dual of each other correspond

precisely to the early and late universe state values respectively. [1], [2],[3].

In this paper we analyze the new quantum vacuum region inside the Planck scale

hyperbolae which delimitate the quantum light cone in the Schwarschild-Kruskal

space-time. The effect of the zero point (vacuum) quantum energy bends the space-time

and produces a constant curvature central region. We find the quantum discrete levels of

the black hole space-time, and in the vacuum trans-Planckian region. In Section IV we

describe the global quantum space-time structure of the Schwarzschild-Kruskal black hole

and extend the Penrose diagram [5] to the quantum domain. In Figure 1 we displays the

new quantum Penrose diagram .

The quantum space-time structure is discretized in quantum hyperbolic levels. For times

and lengths larger than the Planck scale, the global space- time levels are

(Xn, Tn) =
√
2n+ 1, n = 0, 1, 2..., (in Planck units), as well as the mass levels Mn. The

allowed levels cover the whole domaine from the Planck scale (Xn, Tn) = 1, (n = 0), and

the quantum (low and intermediate n) levels until the quasi-classical and classical ones and

tend asymptotically (very large n) to a continuum classical space-time. In the

trans-Planckian domain, (lengths and masses smaller than the Planck scale), in the black

hole central region, (Xn, Tn) are (1/
√
2n+ 1), the most higher n being the more quantum,

excited and trans-Planckian ones.

The size of the black hole is the gravitational length LG in the classical/semiclassical

regime, it is the quantum length LQ = l2P/LG in the full quantum gravity regime.
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Similarly, for the Quantum mass MQ = m2
P/M , and quantum surface gravity

KQ = κ2
P/KG. Gravitational thermal features as Hawking radiation are typical of the

semiclassical gravity regime. The end of evaporation is purely quantum and non thermal.

For masses smaller than the Planck mass, the final state is not anymore a black hole but a

composite particle-like (or string-like) state. Moreover, the quantum mass spectrum for all

masses we found (Section V here), and the decay rates (Section VIII) confirm this picture.

We describe in Section VI the imaginary time manifold (quantum instanton): The

quantum trans-Planckian central core allows here to complete the classical gravity

Gibbons-Hawking instanton, which is cutted at the horizon: The classical black hole

instanton is regular but not complete. The black hole quantum instanton is regular and

complete. In Figure 2 we depict the new quantum instanton black hole picture.

These results allow us to describe (in Section VII) the complete Partition function covering

all (classical and quantum) gravity regimes, and the trans-Planckian entropy. We discuss

the comparison between the point particle QFT entropy (without gravity), the black hole

entropy and quantum strings in terms of ordered and non ordered partition numbers.

The discrete levels in the trans-Planckian central core of the black hole extend with

decreasing n from the most quantum highly excited levels (very large n) with smaller

entropy SQn = 1/(2n+ 1) and higher vacuum density ΛQn = (2n+ 1), until the Planck

scale level (n = 0). In the external black hole space-time, the discrete levels extend from

the Planck scale (n = 0) and low n to the quasi-classical and classical levels, tending (very

large n) to a continuum space-time. Consistently, these levels have larger gravitational

(Gibbons-Hawking) entropy SGn = (2n+ 1), n = 0, 1, 2, ... and lower vacuum energy

ΛGn = 1/(2n+ 1).

There is no singularity at the black hole origin because: (i) The r = 0 mathematical

singularity is not physical but the result of the extrapolation of the purely classical (non

quantum) General Relativity theory, out of its domain of physical validity. The Planck

scale and the quantum uncertainty principle in quantum gravity, precludes the

extrapolation until the zero length or time, which is precisely what is expected from

quantum trans-Planckian physics: the smoothness of the classical gravitational

singularities. (ii): The vacuum interior of the black hole is a small region of high but

bounded trans-Planckian constant curvature and therefore without any singularity.
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There is no singularity boundaries in the quantum space-time, not at r = 0, not at any

other place. The quantum Schwarzschild - Kruskal space-time is totally regular.

Moreover, the quantum hyperbolae (T 2 −X2) = ±
√
2 which replace the classical

singularity (T 2 −X2)classical(r = 0) = ±1, lie outside the allowed quantum levels

(T 2 −X2)n = (2n+ 1), n = 0, 1, ... and therefore they are excluded at the quantum level:

The singularity is removed out from the quantum space-time.

This paper is organized as follows: In Section II we discuss why a quantum theory of

graviy must be finite. In section III we describe the classical, semiclassical and quantum

Planckian and trans-Planckian black hole regions and regimes, their properties and the

gravitational entropy in these three regimes. In Section IV we describe the quantum global

Schwarschild-Kruskal space-time structure, its quantum Penrose diagram, and the new

results obtained with it. Section V deals with the black hole mass spectrum in the whole

mass range, from astrophysical black holes to masses smaller than the Planck mass, passing

through the Planck mass (the crossing scale). Sections VI and VII, describe the new

imaginary time black hole instanton including the trans-Planckian region, the Partition

function, and the trans-Planckian entropy. In Section VIII we discuss the implications of

these results for the early and last phases of black hole evaporation and the quantum pure

(non-mixed) decay rate. Sections IX and X summarize remarks and conclusions.

II. A QUANTUM THEORY OF GRAVITY MUST BE FINITE

The construction of a complete consistent quantum theory of gravitation continues being

the greatest challenge in physics today. This is a problem of fundamental relevance for the

quantum unificacion of all interactions and particle physics, theoretical physics and

cosmology, the physical origin of the universe and its most early phases, as well as the

black hole interiors, quantum origin and end of black holes, multiverse possibilities, and

several other physical implications of these problems.

In addition, there is the possibility of ”low energy” (E << MPlanck) physical effects that

could be experimentally tested. One of them is the today dark energy [10], [11], [12], [13],

described as the low energy (classical, dilute, large scale) cosmological vacuum, remannent

today of the high energy (quantum trans-Planckian, highly dense, small scale)

cosmological vaccum at the origins Refs [1], [3].



7

A problem mostly discussed in connection with gravity quantization is the one of the

renormalizability of the Einstein theory (or its various generalizations) when quantized as a

local quantum field theory (QFT). A complete quantum theory at the Planckian and

trans-Planckian domain must have the today’s General Relativity, Quantum Mechanics

and Quantum Field Theory as limiting cases. Physical effects combining gravitation and

quantum mechanics are relevant at energies of the order of

MPlanck =
√

ℏ/G = 1.22 1016 TeV and beyond, namely the trans-Planckian domaine:

EPlanck ≤ E < ∞, 0 < L ≤ lPlanck = 10−33 cm.

Such energies were available in the Universe at times 0 < t ≤ tPlanck = 5.4 10−44 sec.

Nevertheless, ”low energy” (E << MPlanck) physical effects could be experimentally tested,

like the today cosmological vacuum, Refs [10], [11], [12], [13]. In addition, one may

speculate about effects analogous to the presence of magnetic monopoles in some Grand

Unified Theories, (monopoles can be detected by low energy experiments in spite of their

large mass).

A theory valid at the Planck scale and beyond, that is in the trans-Planckian domain

E > EPlanck, L < lPlanck, necessarily involving quantum gravitation, will also be valid at

any lower energy scale. One may ignore higher energy phenomena in a low energy theory,

but the opposite is not true. In other words, a theory of quantum gravity will be a ”theory

of everything”. This conclusion is totally independent of the use or not of string models. It

may not make physical sense to quantize pure gravity. A physically sensible quantum

theory cannot contain only gravitons. For example, a theoretical prediction for the

graviton-graviton scattering at energies of the order of MPlanck must include all particles

produced in a real experiment, that is, in practice, all existing particles in Nature, since

gravity couples to all matter.

Let us discuss from a conceptual point of view the renormalizability question for

gravity. As is clear from the preceding discussion, we have MPlanck ≤ Λ0 <∞ for gravity.

There cannot be any quantum field theory of particles beyond it. Therefore, if ultraviolet

divergences appear in a quantum theory of gravitation, there is no way to interpret them

as coming from a higher energy scale as it is usually done in QFT. That is to say, no

physical understanding can be given to such ultraviolet infinities. The only logically
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consistent possibility would be to find a finite theory of quantum gravitation which is a

”Theory of Everything” (TOE).

These simple arguments based on the renormalization group lead us to the conclusion that

a consistent quantum theory of gravitation must be a finite theory and must include

all other interactions. That is, it must be a TOE (”theory of everything”). In

particular, it needs the understanding of the present desert between 1 TeV and 1016 TeV .

There is an additional dimensional argument about the inference of a Quantum Theory of

Gravitation → TOE: There are only three dimensional physical magnitudes in Nature:

(length, energy and time) and correspondingly only three dimensional constants in nature:

(c, h,G). All other physical constants like: α = 1/137, 04..., Mproton/melectron, θWS, ...etc

are pure numbers and they must be calculable in a TOE.

The exhibit of (c,G, h) helps in recognizing the different relevant scales and physical

regimes. Even if a hypothetical underlying ”theory of everything” could only require pure

numbers (option three in Ref. [17]), physical touch at some level asks for the use of

fundamental constants [18], [19], [20], [21]. Here we use three fundamental constants,

(tension being c2/G). It appears from our study here and in Refs [1], [2], [3], [4] that a

complete quantum theory of gravity is a theory of pure numbers.

III. CLASSICAL, SEMICLASSICAL AND QUANTUM BLACK HOLES

The physical classical, semiclassical and quantum Planckian and trans-Planckian gravity

regimes are particularly important for several reasons, eg: the different stages of the

universe evolution, the different stages of the black hole evolution (origin, evaporation and

end), the different regions of the global complete (Kruskal-like completion) black hole

space-times.

(i) The classical gravity regimes are those of classical space-time with very low energies

(E << EPlanck and large sizes LG >> lPlanck), semiclassical gravity is that of curved

space-times with QFT for matter, back reaction included, as the cosmic inflation quasi-de

Sitter stage of the universe, (with typical energy scale being the Grand unification scale,

not larger than it), and the black hole evaporation in its early and middle stages.

Quantum gravity regime includes Planckian and trans-Planckian energies, as the early
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universe stage at and before the Planck time, the last black hole evaporation stages, the

quantum space-time black hole regions inside the event horizon, and more generally, the

quantum space-time region inside the ”quantum light-cone”.

- The classical/semiclassical gravity regime corresponds to any of the external space-time

regions outside the black hole horizon until the asymptotic far regions, as well as the early

(semiclassical / semiquantum) gravity phases of the black hole evaporation.

- The quantum black hole regimes refer to the highly small quantum trans-Planckian

interior of the black hole, as well as to the highly quantum gravity last phases of Black

Hole evaporation.

- For any black hole, the classical or semiclassical gravity regimes and the quantum

(Planckian and trans-Planckian) gravity regimes are classical-quantum duals of each other

in the precise sense of the classical-quantum duality. This means the following:

- The classical/semiclassical Black Hole (BH)G, (that is, large black hole sizes and masses,

external black hole regions), is clearly characterized by the set of physical gravitational

magnitudes or observables (size, mass, classical temperature or surface gravity, entropy)

≡ (LG,M, TG, SG):

(BH)G = (LG, MG, TG, SG) (3.1)

- The highly dense very quantum Black Hole regime (BH)Q is characterized by the

corresponding set of quantum dual physical quantities (LQ,MQ, TQ, SQ) in the precise

meaning of the classical-quantum duality:

(BH)Q = (LQ, MQ, TQ, SQ) (3.2)

(BH)Q =
(bh)2P
(BH)G

, (bh)P = (lP , mP , tP , sP ) (3.3)

(bh)P standing for the corresponding quantities at the fundamental constant Planck

scale, the crossing scale between the two main, classical and quantum, gravity domains.

The black hole horizon separates the interior region which is quantum and trans-Planckian

from the external space-time regions which are classical and semiclassical with energies

lower than the Planck energy. The classical (BH)G and quantum (BH)Q Black Hole

regimes (classical/semiclassical phases of black holes, and their quantum Planckian and

trans-Planckian interior, or their very late phases of evaporation), satisfy Eqs.(3.1)-(3.3).
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The total or complete Black Hole (BH)QG, is composed by their classical/semiclassical

external regions and their quantum interior:

(BH)QG = BH [ (bh)P , (BH)Q, (BH)G] (3.4)

The subscript G stands for the classical gravitation magnitudes or domain, Q stands for

the Quantum ones, and P for their fundamental Planck scale constant values. We will see

it explicitely in the following Sections: In section IV, for the black hole regions and

different regimes, and for the QG black hole properties and physical magnitudes: surface

gravity, black hole instanton, temperature, partition function, density of states, entropy,

decay rates.

The quantum black hole (BH)Q is generated from the classical black hole (BH)G through

Eqs.(3.1)-(3.4): classical-quantum black-hole duality. The complete (classical plus

quantum) black-hole (BH)QG endowes a classical-quantum black hole CPT symmetry.

This includes in particular the classical, quantum, and total black hole temperatures and

entropies and allows to characterize in a precise way the different classical, semiclassical,

Planckian and trans-Planckian black hole domains.

The black hole size is the gravitational length LG in the classical regime, it is its quantum

length LQ = l2P/LG in the quantum dual regime (which includes the full quantum

Planckian and trans-Planckian regime). The complete size LQG endowes the symmetry

Q←→ G : (LG/lP )←→ (lP/LG). The complete (QG) (classical and quantum) variables,

in particular the length LQG (lP , LG) cover the complete black hole manifold including the

quantum trans-Planckian interior and the semiclassical and classical black hole exterior.

(i) For mP < M ≤ ∞ : LQG ≃ LG, LG > LQ, which is the classical or semiclassical

gravity domain. (ii) For 0 ≤M < mP : LQG ≃ LQ, LQ > LG, which is the standard

elementary particle physics domaine. (iii) For M = mP : LQG = 1 = LQ = LG = lP , it is

the Planck scale (the crossing scale).

Similarly, the horizon acceleration (surface gravity) KG = c2/LG of the black hole in its

classical gravity regime becomes the quantum acceleration KQ = k2
P/KG in the quantum

dual gravity regime. The classical temperature TG, measure of the classical gravitational

length or mass (in units of κB), becomes the quantum temperature TQ (measure of the

quantum size or Compton length) in the quantum regime. Consistently, the

Gibbons-Hawking temperature is precisely the quantum temperature TQ.
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Similarly, the classical/semiclassical gravitational area or entropy SG (Bekenstein-Hawking

entropy) has its quantum dual SQ = s2P/SG in the quantum gravity (Planckian and

trans-Planckian) regime, sP = πκB being the Planck entropy:

SG =
sP
4

(
AG

aP

)
= sP

(
M

mP

)2

(3.5)

SQ =
sP
4

(
aP
AG

)
= sP

(mP

M

)2

(3.6)

The total QG (classical and quantum) gravitational entropy SQG derives from the general

expression

SQG = kB
AQG

4 l2P

where AQG = 4π L2
QG = 4π (LQ + LG)

2 is the total area which expresses as =

AQG = AQ + AG + 2aP . Recall that LQ = l2P/LG and aP = 4πl2P . As a consequence:

SQG = 2 sP + SG + SQ = 2 sP

[
1 +

1

2

(
SG

sP
+

sP
SG

) ]
(3.7)

The total (QG) gravitational entropy is the sum of the three components as it must be:

classical (subscript G), quantum (subcript Q) and Planck value (subscript P )

corresponding to the tree gravity regimes. The term sP arises from the duality between the

quantum and classical black hole sizes LQ and LG across the Planck scale. It reflects the

complete QG covering: the Planck scale being the bordering or crossing scale common to

the two (classical and quantum) Q and G domains, and to the two black hole regions:

classical (exterior) and quantum (interior) black hole regions.

The gravitational entropy SG of large (classical) large astrophysical black holes is a very

huge number, consistent with the fact that classical black holes contain a very huge

amount of information. Moreover, to reach such a huge entropy, the black hole in its late

collapse state should have been in a highly energetic vacuum state of amount SG.

The gravitational (Gibbons-Hawking [22] and Bekenstein [23]) entropy covers the

classical/semiclassical gravity but not the fully quantum gravity domaine. In this domaine

the relevant appropriate size of the quantum system is the Compton or quantum length LQ

and not the gravitational size. The gravitational entropies in the two different domains are

classical-quantum gravity duals of each other. The total gravitational entropy is the sum

of the entropies in the three main gravity regimes: classical/semiclassical gravity,
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Planckian and Trans-Planckian regimes. The complete (QG) variables entail precisely

those three regimes, and provide the additive constant too, that is the pure Planckian scale

term (a constant). The total or complete (QG) entropy here refers to the inclusion of the

quantum gravity entropy which is trans-Planckian and corresponds to the central

quantum interior region of the black hole. The imaginary time quantum

gravitational instanton treatment and the euclidean partition function we present here (in

Sections VI and VII below), provide further support to this entropy.

The complete (classical plus quantum) physical quantities are invariant under the

classical-quantum duality: G↔ Q. As the wave-particle duality at the basis of quantum

physics, the wave-particle-gravity duality is reflected in all black hole regions and its

associated physical quantites, temperature and entropy. The classical-quantum or

wave-particle-gravity duality between the different gravity regimes can be viewed as a

mapping between the asymptotic (in and out) states characterized by the sets BHQ and

BHG and thus as a Scattering-matrix description. Recall that wave-particle-gravity duality

manisfests too in the different cosmological eras and its associated gravity quantities,

temperature and entropy, [1], [2], [3]: Cosmological evolution goes from a very early or

precursor quantum trans-Planckian phase to a semiclassical gravity accelerated era (de

Sitter inflation), then to the classical gravity known eras until the present classical de

Sitter phase.

IV. QUANTUM SPACE-TIME STRUCTURE OF BLACK HOLES

The complete QG variables allow to uncover that in the complete analytic extension or

global structure of the Kruskal space-time underlies a classical-quantum duality structure:

The external or visible region and its mirror copy are the classical or semiclassical

gravitational domains while the internal region is a quantum gravitational-trans Planckian

scale-domain. A duality symmetry between the two external regions, and between the

internal and external parts shows up as a classical - quantum duality through the Planck

scale. External and internal regions show up with respect to the Planck scale hyperbolae

X2 − T 2 = ±1 which delimitate the different black hole regions. In fact, ”interior” and

”exterior” lose their meaning in this region because the classical X = ±T dissapear at the

quantum level and became X2 − T 2 = ±1, (in Planck units).
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Quantum space-time can be described as a quantum oscillator with its quantum algebra.

From the classical-quantum duality and quantum oscillator (X,P ) variables in global

phase space, the space-time coordinates are promoted to quantum noncommuting

operators. In classical phase space, the mapping between Schwarzschild (x∗, p∗), and
Kruskal (X,P ) coordinates is given by

X = exp (κx∗) cos (κp∗), P = exp (κx∗) sin (κp∗) (4.1)

(X2 + P 2) = exp (2κx∗) = 2 Hosc, (X2 − P 2) = exp (2κx∗) cos (2κp∗) (4.2)

As is known, the classical Kruskal coordinates (X,T ) in terms of the Schwarzschild

representation (x∗, t∗) are given by

X = exp (κx∗) cosh(κt∗), T = exp (κx∗) sinh(κt∗) (4.3)

(X2 − T 2) = exp (2κx∗) = 2 H, (X2 + T 2) = exp (2κx∗) cos(2κt∗) (4.4)

with the Schwarzschild star coordinate x∗:

exp(κx∗) =
√
2κr − 1 exp(κr), 2κr > 1 (4.5)

t∗ being the usual Schwarszchild time, κ is the dimensionless (in Planck units) gravity

acceleration or surface gravity. Another similar patch but with X and T exchanged and x∗
defined by exp(κx∗) =

√
1− 2κr exp(κr), holds for 2κr < 1.

For (X,T ) being quantum coordinates, ie non-commuting operators, and similarly for

(x∗, t∗), the transformation is given by:

X = exp (κx∗) cosh(κt∗), T = exp (κx∗) sinh(κt∗) (4.6)

(X2 − T 2) = exp (2κx∗) cosh(κ[x∗, t∗]) (4.7)

(X2 + T 2) = exp (2κx∗) cosh(2κt∗) (4.8)

[X,T ] = exp (2κx∗) sinh(κ[x∗, t∗]) (4.9)

where we used the usual exponential operator product:

exp(A) exp(B) = exp(B) exp(A) exp([A,B]).

New terms do appear due to the quantum conmutators. At the classical level:

[X,T ] = 0, [x∗, t∗] = 0 (classically)
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and the known classical Schwarzschild-Kruskal equations are recovered.

Eqs. (4.6)-(4.9) describe the quantum Schwarzschild-Kruskal space-time structure and its

properties. The equation for the quantum hyperbolic ”trajectories” are

(X2 − T 2) = ±
√
exp (4κx∗) + [X,T ]2 = ±

√
(1− 2κr)2 exp (4κr) + [X,T ]2 (4.10)

The characteristic lines and what classically were the light-cone generating horizons

X = ±T (at 2κr = 1, or x∗ = −∞) become:

X = ±
√

T 2 + [X,T ]2 at 2κr = 1: X ̸= ±T , no horizons (4.11)

X ̸= ±T at 2κr = 1 and the null horizons are erased. Similarly, in the interior regions, the

classical hyperbolae (T 2 −X2)classical = ±1 which described the known past and future

classical singularity r = 0, (x∗ = 0) become at the quantum level:

(T 2 −X2) = ±
√

1 + [X,T ]2 = ±
√
2 at r = 0: (T 2 −X2) ̸= ±1 no singularity

(T 2 −X2)classical = ±1 at r = 0 classically (4.12)

Moreover, the quantum Kruskal light-cone variables in hyperbolic space

U =
1√
2
(X − T ), V =

1√
2
(X + T ) (4.13)

are, upon the identification P = iT , the (a, a+) operators in phase space: The creation and

annihilation operators (a, a+) are the light-cone type quantum coordinates of the phase

space (X,P ):

a =
1√
2
(X + iP ), a+ =

1√
2
(X − iP ) (4.14)

The temporal variable T in the space-time configuration (X,T ) is like the (imaginary)

momentum in phase space (X,P ). The identification P = iT yields:

X =
1√
2
(a+ + a), T =

1√
2
(a+ − a) , [a, a+] = 1 (4.15)

wich satisfy the algebra:

2H = (X2 − T 2) = (2a+a+ 1), (X2 + T 2) = (a2 + a+2),

[2H,X] = T, [2H,T ] = X, [X,T ] = 1, (4.16)
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a+ a = N being the number operator.

The quantum space-time coordinates (X,T ) can therefore be considered quantum

oscillator coordinates (X,T = iP ), including quantum space-time fluctuations with length

and mass within the Planck scale domain and quantized levels. The quadratic form

(symmetric order of operators):

2H = UV + V U = X2 − T 2 = (2V U + 1), V U = N ≡ number operator,

yields the quantum hyperbolic structure and the discrete hyperbolic space-time levels:

X2
n − T 2

n = (2n+ 1), n = 0, 1, ... (4.17)

The amplitudes (Xn, Tn) being

Xn =
√
2n+ 1, Tn =

√
2n+ 1 (4.18)

With the identification T = −iP , the quantum coordinates (U, V ) for hyperbolic

space-time are precisely the (a, a+) operators and as a consequence V U is the Number

operator. The expectation value (2n+ 1) has a minimal non zero value for n = 0 which is

the zero point energy or Planck scale vacuum.

• The future and past regions to the quantum Planck hyperbolae

(T 2 − X2)n=0 = ±1, all contain totally allowed levels and behaviours. There is no

singularity boundary in the quantum space-time, not at r = 0 = x∗, not at any other

place. The quantum Schwarzschild - Kruskal space-time is totally regular.

• There are no singularity boundaries at the quantum level, not at (T 2 − X2)(2κr =

1) = ±1 nor at (T 2 −X2)(r = 0) = ±
√
2 . The quantum space-time extends without

boundary beyond the Planck hyperbolae (T 2 − X2)(n = 0) = ±1 towards all levels:

from the more quantum (low n) levels to the classical (large n) ones. The black hole

interior is quantum and trans-Planckian. The internal region to the four quantum

Planck hyperbolae (T 2 −X2)(n = 0) = ±1 is totally quantum and within the Planck

scale: this is the quantum vacuum or ”zero point energy” region of the quantum

interior of the black hole.

• The null horizons disappeared at the quantum level. Due to the quantum [X,T ] com-

mutator, quantum (X,T ) dispersions and fluctuations, the difference between the four
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classical Kruskal regions (I, II, III, IV) dissapears in the trans-Planckian domain and

become one single central region. This provides support to the quantum identification

at the Planck scale of the Kruskal regions, and which translates into the CPT sym-

metry at the quantum level Refs [1],[2],[3],[25].

• In terms of the local, Schwarzschild variables (x∗n±, t∗n±) or (xn±, tn±), being x =

exp (κx∗), and t = exp (κt∗), the levels are:

xn± = [
√
2κrn± − 1 ] exp (κrn±) = [

√
2n+ 1±

√
2n ] (4.19)

tn± = [
√
2n+ 1±

√
(2n+ 1) + 1/2 ], (4.20)

xn=0 (+) = xn=0 (−) = 1 : Planck scale,

which complete all the levels. The low n, intermediate, and large n levels describe re-

spectively the quantum, semiclassical and classical behaviours, and their (±) branches
consistently reflect the classical-quantum duality properties, as shown explicitely for

the similar branches of the mass spectrum in Section V here below.

The classical singularity r = 0 = x∗ is quantum mechanically smeared or erased which is

what is expected in a quantum space-time description. The diagram of the global quantum

Schwarschild-Kruskal space-time, which we name the quantum Penrose diagram, is shown

in Figure 1.

Xn, xn in Eqs. (4.18), (4.19) are given in Planck units. In terms of the mass global

variables X = M/mP , or the local ones x = m/mP , they translate into the mass levels:

Mn = mP

√
(2n+ 1), all n = 0, 1, 2, .... (4.21)

Mn n>>1 = mP [
√
2 n +

1

2
√
2 n

+ O(1/n3/2) ], (4.22)

mn± = [ Mn ±
√
M2

n −m2
P ], (4.23)

The condition M2
n ≥ m2

P simply corresponds to the whole spectrum n ≥ 0:

mn± = mP [
√
2n+ 1 ±

√
2n ] (4.24)

• The quantum mass levels here holds for all masses and not only for black holes.

Namely, the quantum mass levels are associated to the quantum space-time structure.

Space-time can be parametrized by masses (”mass coordinates”), just related to length

and time, as the QG variables, on the same footing as space and time variables. .
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FIG. 1. The quantum Penrose diagram of the Schwarschild-Kruskal black hole. The

quantum hyperbolae X2 − T 2 = ± l2P replace the classical null horizons X = ±T . The internal

region to them is purely quantum and trans-Planckian. The difference between the four classical

Kruskal regions (I, II, III, IV) dissapears in the quantum domain and become one single central

region. The exterior regions are semiclassical / classical asymptotically flat space-times. There

is no curvature singularity at r = 0 not at any other place. The quantum space-time is totally

regular. Regions extend regularly without any finite boundary nor curvature singularity. The

central quantum region is of constant finite curvature. Moreover, the discrete spectrum confirms

this picture: The quantum hyperbolae (T 2 − X2) = ±
√
2 which replace the classical singularity

(T 2 −X2)classical(r = 0) = ±1 lie outside the allowed quantum levels (T 2 −X2)n = (2n+ 1), n =

0, 1, 2, ... and therefore, the (r = 0) hyperbolae singularities are ruled out.
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• Branch (+) covers all macroscopic and astrophysical black holes as well as semiclassical

black hole quantization
√
n, until masses nearby the Planck mass; and branch (-) covers

quantum masses 1/
√
n in the Planckian and trans-Planckian domaine.

• The black hole mP

√
n mass quantization is like the string mass quantization Mn =

ms

√
n, n = 0, 1, ... with the Planck mass mP instead of the fundamental string mass

ms, ie with G/c2 instead of the string constant α′.

V. IMAGINARY TIME. THE NEW TRANS-PLANCKIAN BLACK HOLE

INSTANTON

In the classical (non-quantum) Schwarschild-Kruskal space-time, taking imaginary time

T = iT , t = iτ , transforms the hyperbolic space-time structure into a circular structure:

The characteristic lines X2 + T 2 = 0 collapse to X = ±T = 0. Therefore, the classical

horizon X = ±T (2κr = 1) collapses to the origin, and in the classical (non-quantum)

black hole instanton, the black hole interior is cutted, no horizon, and no curvature r = 0

singularity, does appear. Therefore, the classical black hole instanton is regular but is not

complete: The interior black hole region is not covered by the imaginary time classical

(non quantum) black hole manifold.

In the quantum Schwarzschild imaginary-time manifold, the quantum trans-Planckian

region corresponds to the black-hole interior, Figure 2. Moreover, the quantum manifold

covers consistently and regularly without any singularity, (not at r = 0, nor at any other

place), both: the external and internal black hole regions. This is so in both: The

hyperbolic (real time) and the euclidean (imaginary time) manifolds, because of the

quantum non-zero commutators [X,T ] and [X, T ] respectively.
The complete quantum black hole instanton includes the usual classical/semiclassical black

hole instanton for radius larger than the Planck length, plus a new central highly dense

quantum core of Planck length radius and high constant and finite curvature at r = 0,

corresponding to the black-hole interior, which is absent in the non-complete (classical)

black-hole instanton.

In the quantum instanton Schwarschild - Kruskal manifold, Eqs. (4.6) hold but for
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T = iT , t∗ = iτ∗ and the same star coordinate x∗:

exp (κx∗) =
√
2κr − 1 exp (κr), 2κr > 1 (5.1)

being κ = (c2/2LG) = κP (mP/4M) the gravity acceleration or surface gravity. Another

similar patch holds for 2κr < 1 but with X and T exchanged, (similarly for x∗ and τ∗),
and with x∗ defined by exp (κx∗) =

√
1− 2κr exp (κr). Therefore:

X = exp (κx∗) cos(κτ∗), T = exp (κx∗) sin(κτ∗) (5.2)

(X2 + T 2) = exp (2κx∗) cos(κ[x∗, τ∗]) (5.3)

(X2 − T 2) = exp (2κx∗) cos(2κτ∗) (5.4)

[X, T ] = exp (2κx∗) sin(κ[x∗, τ∗]) (5.5)

where we used the usual exponential operator product:

exp(A) exp(B) = exp(B) exp(A) exp([A,B]).

The euclidean (imaginary time) quantum instanton clearly shows the new trans-Planckian

region because for 2κr = 1, (X2 + T 2) is not zero and have Planckian radius: The equation

for the quantum instanton ”trajectories” are

(X2 + T 2) = ±
√

exp (4κx∗) + [X, T ]2 = ±
√
(1− 2κr)2 exp (4κr) + [X, T ] (5.6)

What classically was the zero radius X = ±T = 0 at 2κr = 1 or x∗ = −∞, are now:

(X2 + T 2) = [X, T ]2 at 2κr = 1: X ̸= ±T = 0 , no horizons (5.7)

We see that

X ̸= ±T ≠ 0 at 2κr = 1.

The classical null horizons corresponding to the origin X = ±T = 0 in the euclidean

signature space-time (instanton) are quantum mechanically replaced by the Planck circle

(X2 + T 2) = [X, T ] = 1.

Figure 2 clearly displays this picture. That is to say, quantum theory consistently extends

the instanton manifold: classically the instanton is ”cutted” at the ”horizon” r = 1/(2κ),
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while at the quantum level it extends beyond it: it contains the quantum region of Planck

length radius lP , which is neccesarily trans-Planckian and is absent at the classical level.

That means that the quantum and regular imaginary time manifold, (quantum

gravitational instanton), is the usual classical/semiclassical instanton for radius larger than

the Planck length plus a central highly dense quantum core of Planck length radius, and of

high finite curvature, which is absent classically.

The imaginary time τ in the classical instanton is periodic with period β = 2LG = 1/κG :

0 ≤ τ ≤ β = 2LG = 1/κG, (classically) (5.8)

1/β being the intrinsic manifold semiclassical temperature: the Hawking Temperature

TQ = tP

(
lP
2LG

)
, (5.9)

tP being the Planck temperature. In the complete or total quantum instanton, the

imaginary time is periodic as in Eq.(5.8) but with the complete LQG which includes the

quantum Planckian and trans-Planckian magnitudes:

0 ≤ τ ≤ β = 2 LQG = 2 (LG + LQ) = 1/κQG, (5.10)

κQG = κP (lP/LQG), κQ = κ2
P/κG, κP = c2/2 lP (5.11)

κQG =
κG

[ 1 + (κG/κP )2 ]
=

κQ

[ 1 + (κQ/κP )2 ]
(5.12)

In the classical/semiclassical gravity domaine : κG << κP it yields the usual classical

surface gravity κG of massive bodies with masses M > mP . For κQ << κP , in the

quantum domaine of masses M < mP , (elementary particle domain), it yields the quantum

κQ = κP (4M/mP ). The corresponding complete temperature being :

TQG = tP κQG/(2πκP ), TQ = t2P/TG, tP = mP c
2/(8πκB) (5.13)

TQG =
TG

[ 1 + (TG/tP )2 ]
=

TQ

[ 1 + (TQ/tP )2 ]
(5.14)

For large masses, in the astrophysical domain: TQ << tP , it yields the quantum

Temperature TQ, which is the Hawking temperature, as it must be. For small masses,

(0 < M < mP : TG << tP , it yields the usual temperature TG proportional to the mass, as

it must be in the elementary particle domain. This is also manifest in the Partition
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FIG. 2. The quantum gravitational instanton of the Schwarschild-Kruskal black

hole (imaginary time: T = iT , t = iτ). The classical null horizons corresponding to the

origin X = ±T = 0 in the classical gravitational instanton of the Schwarschild-Kruskal black hole

(Gibbons-Hawking instanton) are quantum mechanically replaced by the circle of Planck length

radius (X2 + T 2) = [X, T ] = 1, (in Planck units). Quantum theory consistently extends the

instanton manifold: Classically, the instanton is regular but is not complete because it is ”cutted”

at the ”horizon” r = 2M , while at the quantum level it is both: regular and complete: The

quantum gravitational black hole instanton is the usual classical instanton for radius larger than

the Planck length plus a central highly dense quantum core of Planck length radius, and of high finite

curvature, which is absent classically. The difference between the four Kruskal regions disappears

in the euclidean manifold, they became identified. (We just indicated their places for memory of

the hyperbolic manifold). The imaginary time τ in the classical instanton is periodic with period

β = 2LG = 1/κ : 1/β being the intrinsic (Hawking) temperature. In the complete quantum

instanton, the imaginary time is periodic too but with the complete LQG = (LG + LQ) which

includes the quantum Planckian and trans-Planckian magnitudes. The complete Temperature

TQG, Entropy SQG and density of states all include the trans-Planckian domain, Section VI and

Section VII.
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function (Section V below) and the corresponding complete entropy. The Temperature is a

measure of the length (in units of κB), TG = tP (LG/lP ), TQ = tP (LQ/lP ), while the

gravitational entropy is a measure of the area. In this respect, is interesting to notice that:

SQFT = sP (L/lP )
3 => n (5.15)

SG = sP (L/lP )
2 = M2 => (

√
n)2 (5.16)

Sstring = sP (L/lP ) = M =>
√
n (5.17)

SQ = sP (lP/L)
2 = M−2 => 1/(

√
n)2 (5.18)

In pure QFT without gravity the number of modes of the fields is proportional to the

volume of the system (ie a box), and a short distance external cut-off is necessary,

naturally placed at the Planck lenght lP , because of QFT ultraviolet divergences. The

string entropy Sstring is proportional to the length. The Black Hole gravitational entropy is

proportional to the area, (whatever be SG or SQ), and thus ”interpolates” between the

non-gravitational entropy SQFT and the string entropy Sstring. SG which is the known

Bekenstein-Hawking entropy exhibits its classical/ semiclassical nature, ie, L >> lP

(equivalently, MG >> mP , κG << κP , TQ << tP ):

SG = sP (TG/TQ) = (Mc2/TQ)

VI. PARTITION FUNCTION. THE TRANS-PLANCKIAN ENTROPY

As is known, D + 1 dimensional quantum field theory with imaginary periodic time

0 ≤ τ ≤ β corresponds to a classical statistical mechanics or field theory with temperature

1/β, which is used too in the euclidean path integral of gravity, Ref. [22],

Z = Tr exp (−βH), (6.1)

H being the euclidean Hamiltonian H (the ”evolution” generator in imaginary time, with

the trace implaying periodic evolution 0 ≤ τ ≤ β).

The complete (including both classical and quantum) black hole radius and temperature

are LQG and TQG and are discussed in Section VI above. The complete (whole range)

discrete levels are discussed in Section V and VI. Let us stress the following items about

the partitions or the density of levels:
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• (i) The different types of discrete partitions depend on the physical nature of quantum

elements considered (point particles, composite or extended quantum objects).

• (ii) The number of partitions depends on whether one considers ordered or unordered

partitions, that is to say, counting or not counting the permutations.

• (iii) The degeneracy, the number of states corresponding to the same quantum number

(whatever energy, mass, spin or other) depends on the items (i) and (ii) above.

• (iv) The ensemble of all partitions considered as a Gibbs ensemble yields a thermody-

namical partition.

Let us recall that the number Po(n) of ordered partitions of an integer n into integers

grows exponentially with n :

Po(n) = 2 n−1 =
1

2
exp (n ln 2) (6.2)

The number Pno(n) of non ordered partitions of n, [36] (ie without counting permutations),

asymptotically for large n, grows exponentially with
√
n :

Pno(n) =
1

4
√
3 n

exp (π
√

2n/3) [ 1 +O (
log n

n1/4
) ] (6.3)

• Non-ordered partitions grow slower than the ordered ones. Naturally, the density of

states and its degeneracy are smaller when the permutations are not accounted than

when including the permutations.

• The non-ordered case corresponds to the density Pno(n) of quantum composite el-

ements (with internal structure, extended objects, strings, hadronic matter). The

ordered case corresponds to point particles or quantum point oscillators. Moreover,

the
√
n characterizes the mass spectra of composite or extended oscillating objects,

while n is typical of the spectra of the punctual objects.

• The existence or not of a limiting temperature in the corresponding ensembles is de-

termined by a pure number combinatorial structure: that is to say, by whether permu-

tations are or not included, eg by whether partitions are ordered or unordered, eg by

whether the elements are point particles or extended objects with internal composite

structure as hadrons, strings or other higher dimensional objects.
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The total gravitational entropy SQG of the total or complete (classical and quantum) black

hole euclidean manifold, is the sum of the classical, quantum and Planck scale entropies:

PQG = e SQG (6.4)

SQG = 2 [ sP +
1

2
( SG + SQ ) ], (6.5)

SG =
κB

4

AG

l2P
, SQ =

κB

4

AQ

l2P
, sP =

κB

4

aP
l2P

= πκB, (6.6)

The concept of gravitational entropy is the same for any of the gravity regimes: Area/4l2P

in units of kB. For a classical object of size LG, this is the classical area AG = 4πL2
G. For a

quantum object of quantum size LQ, this is the quantum area AQ = 4πL2
Q, (recall

LQ = l2P/LG). For the Planck length, this is the Planck area aP and sP = πκB is the

Planck entropy :

AG = aP

(
LG

lP

)2

, AQ = aP

(
lP
LG

)2

=
a2P
AG

, aP = 4π l2P (6.7)

SG = sP
ρQ
ρP

= sP

(
M

mP

)2

(6.8)

SQ = sP
ρG
ρP

= sP

(mP

M

)2

(6.9)

The complete entropy is:

SQG = = 2 sP [ 1 +
1

2
( AG + AQ ) ] (6.10)

and consistently, the complete partition function is

ZQG = e SQG = zP ZQ ZG (6.11)

In the quantum space-time region, which classically corresponds to the interior region, the

total black hole entropy SQG is dominated by the Planck entropy sP , the quantum entropy

SQ being extremely low, minimal. The total entropy SQG is very high in the external

(semiclassical/classical) regions and dominated by the Bekenstein- Hawking entropy SG

which is a classical or semiclassical gravity entropy.

The discrete levels n = 0, 1, 2, ...., cover all gravity regimes: from the quantum gravity

(trans-Planckian and Planckian) central black hole region to the semiclassical and classical

exterior black hole regions.
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In the non-trans-Planckian domain, black hole space-time levels (in Planck units) for the

distances LGn, vacuum energy ΛGn, and gravitational (Gibbons-Hawking) entropy SGn are

LGn =
√
(2n+ 1), ΛGn = 1/(2n+ 1), SGn = (2n+ 1), n = 0, 1, 2, ..... (6.12)

In the trans-Planckian phase 0 < r ≤ lP , the quantum trans-Plankian levels (Q denoting

quantum) are:

LQn = 1/
√

(2n+ 1), ΛQn = (2n+ 1), SQn = 1/(2n+ 1), n = 0, 1, 2, ..... (6.13)

The respective associated mass levels are:

Mn =
√
(2n+ 1), MQn = 1/

√
(2n+ 1) (6.14)

The density of states in the classical and quantum gravity phases are thus

dGn = exp (2n+ 1) = exp (Mn)
2, dQn = exp [1/(2n+ 1)] = exp (MQn)

2 (6.15)

dQGn = exp [(2n+ 1) + 1/(2n+ 1)] = exp [M2
n + M2

Qn] (6.16)

The complete (QG) density of states have both: the classical/semiclassical gravity density

with the known (Bekenstein-Hawking) entropy SGn, and the quantum gravity density with

the new trans-Planckian entropy SQn. As n increases, the distances increase, SGn increases

and consistently the black hole space-time classicalizes. In the central quantum region, n

decreases from the most highly central excited trans-Planckian levels, increasing SQn,

decreasing n until n = 0 and then increasing in the semiclassical and classical space-time.

As described in Section V, the n-levels range over all scales from the lowest excited levels

to the highest excited ones covering the twofold dual branches, classical and quantum,

passing through the Planck scale, (n = 0), the crossing scale.

VII. EARLY AND LAST STAGES OF BLACK HOLE EVAPORATION

Our results here and mainly the Quantum mass spectrum in Section V have implications

for the black hole evaporation in all its range. (Xn, Tn) are given in Planck (length and

time) units. In terms of the global quantum gravity dimensionless length L = LQH/lP and

massM = MQH/mP , Eqs. (4.18) and (4.21) translate into the discrete mass levels:

Ln =
√
(2n+ 1) = Mn, n = 0, 1, 2, .... (7.1)
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The black hole mass and radius have discrete levels Mn±, Ln±, from the most fundamental

one (n = 0), going to the semiclassical (intermediate n), to the classical ones (large n)

which yield a continumm classical space-time, radius and mass, as it must be. This is

clearly seen from the mass levels Mn± Eqs. 4.21, 4.22, (and similarly for the radius levels):

M(n=0)+ = M(n=0)− = MQ (n=0) = mP , n = 0 : Planck mass (7.2)

Mn+ = mP [ 2
√
2 n − 1

2
√
2n

+ O(1/n3/2) ], branch (+) : masses > mP (7.3)

Mn− =
mP

2
√
2 n

+ O(1/n3/2), branch (−) : masses < mP (7.4)

(i) Large n levels are semiclassical tending towards a classical continuum space-time. Low

n are quantum, the lowest mode (n = 0) being the Planck scale. Two dual (±) branches
are present in the local variables (

√
2n+ 1±

√
2n) reflecting the duality of the large and

small n behaviours and covering the whole spectrum: from the largest astrophysical masses

and scales in branch (+) to the quantum smallest masses and scales in branch (−) passing
by the Planck mass and length.

The last stage of black hole evaporation and its quantum decay belong to the quantum

mass branch (-) with Planck scale masses and smaller until zero mass.

• Black hole masses belong to both branches (+) and (-): Branch (+) covers all macro-

scopic and astrophysical black holes as well as the semiclassical black hole quantization
√
2n+ 1 until masses nearby the Planck mass (n = 0).

• The microscopic quantum black holes, (with masses near the Planck mass and smaller

until the zero mass, ie originated as a consequence of black hole evaporation, or from

Planckian and trans-Planckian primordial fluctuations), belong to the branch (-).

• The branches (+) and (-) cover all the black hole masses. The black hole masses in

the process of black hole evaporation go from branches (+) to (-). Black hole ends its

evaporation in branch (-) decaying as a pure (non mixed) quantum state.

• Black hole evaporation is thermal in its semiclassical gravity phase (Hawking radiation)

and it is non thermal in its last quantum stage, with a pure (non mixed) quantum

decay rate.
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• In its last phase (mass of the order and smaller than the Planck mass mP ), the state is

not anymore a black hole state, but a pure (non mixed) quantum state, decaying

like a quantum heavy particle. The quantum black holes decay in discrete levels, into

elementary particle states, that is to say, pure (non mixed) quantum states with the

decay rate :

Γ =
g2 m

num.factor
(7.5)

where g is the (dimensionless) coupling constant, m is the typical mass in the theory

considered (the mass of the unstable particle or object) and the numerical factor often

contains the relevant mass ratios in the decay process.

The unifying formula Eq.7.5 for quantum heavy particles [37] nicely encompass all the

particle width decays in the standard model (muons, Higgs, etc), as well as the decay width

of topological and non topological solitons, cosmic defects and fundamental quantum

strings [37] .

For the last stages of quantum black holes, in terms of the discrete mass levels, the decay

levels are:

Γn = G
√
2n+ 1,

which is the same
√
n - dependence as for the decay Γstring of quantum strings .

A quantum closed string in an nth excited state decays into lower excited states (including

the dilaton, graviton and massless antisymmetric tensor fields) [38] with a total width,

given to the dominant order (one string loop) by : Γstring = G T 3
s /n

0 ≈ G l3s which can

be also written as

Γstring = g2 ms/n
0 = G ms/α

′n0 (7.6)

n0 being a numerical factor, ls,ms and Ts being the string length, mass and string

temperature, (α′ playing the role of G/c2). That is, the string decay Γs has the same

structure as Eq.(7.5) with g ≡
√
G/α′.

A semiclassical black hole decays thermally, except in the last evaporation phases, as a

”grey body” at the Hawking temperature TQ, the ”grey body” factor being the classical

black hole absorption cross section σG, eg the black hole area AG, the mass loss rate being

(dM/dt) = − σ L2
G T 4

Q ≈ 1/L2
G, (σ being the Stefan constant). Therefore, the
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semiclassical black hole decay rate is given by

ΓBH = | d ln M

dt
| = G T 3

Q / n0 ≈ G /L3
G (7.7)

As evaporation proceeds, the black hole temperature increases until it reaches the string

temperature Ts = ℏc/(2πκB ls), ls =
√

ℏα′/c Refs. [32], [33], [34], undergoing a phase

transition into a quantum string or to a quantum composite state regime TG →, Ts,

LG → ls: The black hole becomes a quantum string or quantum composite state and

decays with a width

ΓBH → G T 3
s ≈ G / l3s → Γstring

The semiclassical black hole decay rate ΓBH tends to the string decay rate Γs. Similarity

between the black hole decay and the elementary particle decay rate is achieved for

quantum black holes, when the black hole enters its quantum gravity regime, eg the Planck

mass at the ending phase of evaporation.

We compared here with the string case because the computations of black hole radiation in

string theory Refs [32],[33],[34] explicitely support this picture. And, on the other hand

without any use of string theory, we find that the mass quantum discrete spectrum of

black holes is similar to the mass quantum string spectrum. A similar picture holds for a

quantum Planckian decaying state, a quantum composite state, (instead of a quantum

decaying string state): a quantum state at the typical Planck (or trans-Planckian)

temperature TP , with the Planck mass and length, (mP , lP ) instead of the string ones:

ΓBH → G T 3
P = G / l3P → ΓP

There are no quantum objects at such heavy mass as the Planck mass which would remain

stable. They naturally decay quantum mechanically in all particles, mainly gravitons and

radiation. Therefore, the end of the black holes, the ”remnant” states, are the last emitted

particles, gravitons, and radiaton, and other elementary particles, but not stable Planck

mass objects.

Finally, let us just point out that the whole process of black hole formation and end by

evaporation can be considered in terms of a Scattering-matrix between the asymptotic

states.
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Black hole (BH) formation through the gravitational collapse of a star can be described as

a S-matrix evolution (S BH):

| ΨBH (t) ⟩ = S BH (t) | Ψstar(t = tin) ⟩ (7.8)

It can be expressed in terms of the final star state at t = tfinal, that is to say, the black

hole state. And in general:

| Ψstar (t) ⟩ = Sstar (t) | Ψstar(tin) ⟩ (7.9)

In addition, black holes in turn evaporate, and asymptotically after enough long time, end

into a gaz of particles and radiation which eventually, under gravity and pressure

evolution, forms again a star. That is to say, the initial gravitating gaz state forming a star

can be the final gravitating gaz state emitted by the evaporating quantum black hole

(QBH)(or at least a part of it):

| Ψstar (tin) ⟩ = Sstar (tin) | ΨQBH (tfinal) ⟩ (7.10)

Therefore,

| Ψstar (t) ⟩ = Sstar (t) Sstar (tin) | ΨQBH (tfinal) ⟩ (7.11)

It can be also expressed in terms of the initial state | ΨBH (tin) ⟩ instead of the final state

| ΨQBH (tfinal) ⟩. Therefore,

| Ψstar (t) ⟩ = Sstar (t) SBH (t)−1 | ΨBH (t) ⟩ (7.12)

This is another example of unitarity in a whole complete quantum evolution, the S-matrix

in the whole process is unitary SS+ = 1 = S+S. ”In Nature nothing is lost, all is

transformed” [39].

VIII. BLACK HOLE INTERIOR: THE QUANTUM TRANS-PLANCKIAN DE

SITTER VACUUM

We described in Section IV the quantum space-time structure of black holes in terms of a

quantum oscillator algebra with discrete hyperbolic levels

(X2 − T 2)n = (2n+ 1), n = 0, 1, 2, .... The zero point energy (n = 0) is the quantum and
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trans-Planckian vacuum in the central region delimitated by the four hyperbolae

X2 − T 2 = ±1 of the Planck scale (n = 0) level. This is precisely a constant curvature de

Sitter vacuum: The de Sitter vacuum can be described as a (inverted, ie with imaginary

frequency) harmonic oscillator, the oscillator constant being [1],[3]:

κosc = H2, H =
√
(8π GΛ)/3 = c / losc (8.1)

The oscillator length losc is the Hubble radius, the Hubble constant H = κ being the

surface gravity, as the black hole surface gravity is the inverse of (twice) the black hole

radius. The description of de Sitter space-time as an (inverted) harmonic oscillator derives

from the Einstein Equations on the one hand [1], [40],[41], and on the other hand stems

more generally from the de Sitter geometrical description: as an hyperboloid embedded in

a flat Minkowski space-time with one more spatial dimension :

−T 2 +X2 +X2
i + Z2 = L2

QG (8.2)

LQG = (LQ + LG) = lP (H/hP + hP/H), hP = c/lP (8.3)

In the case of Anti-de Sitter, the description is the same but with

−T 2 +X2 +X2
i + Z2 = −L2

QG, and therefore Anti- de Sitter background is associated to a

real frequency (non inverted) harmonic oscillator. Also, the propagation of fields and

linearized perturbations in the de Sitter vacuum all satisfy equations which are like the

inverted oscillator equations, [42], [43],[44], or normal oscillators in Anti de Sitter.

Here in the black hole case, the physical magnitudes as the oscillator constant H2 and

typical length (c/losc) are related to the black hole mass M :

H = c/losc = hP

(mP

M

)
Λ = λP

(mP

M

)2

, hP = c/lP , λP = 3h2
P/c

4 (8.4)

LQG = (LG +LQ) in Eq.(8.2) is the complete length allowing to describe both the classical,

semiclassical and quantum (trans-Planckian) gravity domains. The complete vacuum

density ρQG in the quantum gravity regime including the classical and quantum ones (ρG,

ρQ, ), (ρP being the Planck density scale), is:

ρQG =
ρG

[ 1 + ρG/ρP ]2
=

ρQ
[ 1 + ρQ/ρP ]2

, (8.5)

ρQG (ρG) = ρQG (ρQ) = ρQG (ρ2P/ρG)
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ρG = ρP (H/hP )
2 = ρP (Λ/λP ) , ρP = 3 h2

P/8πG (8.6)

ρQ = ρP (HQ/hP )
2 = ρP (ΛQ/λP ) = ρ2P/ρG (8.7)

The QG magnitudes are complete variables covering both classical and quantum, Planckian

and trans-Planckian, domains. The high density ρQ and ΛQ describe the quantum

trans-Planckian vacuum. This is precisely expressed by Eqs.(3.1)-(3.2) applied to this case:

ρG
ρP

=

(
lP
LG

)2

=
(mP

M

)2

=

(
SQ

sP

)
(8.8)

ρQ
ρP

=

(
lP
Λ

)
=

(
M

mP

)2

=

(
SG

sP

)
(8.9)

The last r.h.s. of Eqs.(8.8)-(8.9) show the link to the gravitational entropy: quantum

gravitational SQ and classical/semiclassical SG entropy.

(Λ, ρG) describe a classical gravitational vacuum: a empty or dilute gravitational vacuum

state of large classical sizes LG = lP
√
λP/Λ = lP (M/mP ), very small density and very low

Λ values. Consistently, the small value of the quantum gravitational entropy SQ is equal to

such small Λ value.

(ΛQ, ρQ) describe a quantum gravitational vacuum, truly in the trans-Planckian domaine of

very small sub-Planckian sizes LQ = lP
√

Λ/λP = lP (mP/M), very high density and very

high ΛQ values. Consistently, the high value of the classical gravitational entropy SG is

equal (in Planck units) to such high ΛQ value.

The external black hole region is precisely a classical gravity dilute vacuum, which in the

present universe cannot be larger than the observed very low values of the classical cosmic

vacuum density and cosmic vacuum energy (Λ, ρG) [10],[11],[12],[13],[16]. The quantum

duals of the classical present universe cosmic vacuum values provide an upper bound to the

high values (ΛQ, ρQ) in the quantum central vacuum black hole region as determined by

Eqs. (8.6)-(8.9)

We quantize the (X,T ) dimensions which are relevant to the quantum space-time

structure. The remaining spatial transverse dimensions X⊥ are considered here as

non-commuting coordinates. This corresponds to quantize the two-dimensional surface

(X,T ) relevant for the light-cone structure. Notice that although the transverse spatial

dimensions ⊥ have zero commutators they could fluctuate. This is enough for considering

the novel features arising in the quantum space-time structure and the quantum light cone.
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IX. CONCLUDING REMARKS

(i) This approach is a first step to cover globally and non-perturbatively the classical,

semi-classical and quantum gravity domaines of black holes. This framework supports and

is consistent with the idea that a quantum theory must be finite. The global QG variables

and quantum discrete space-time include here the highly quantum trans-Planckian

domaine and go well beyond other approachs.

(ii) The trans-Planckian domaine in black holes is found in the central interior region, and

this is so for all black hole masses, including astrophysical and macroscopical black holes

which exterior space-times are classical and semiclassical regions. The highly excited

vacuum central region is a constant curvature de Sitter vacuum without any singularity.

The most central quantum trans-Planckian black hole region have the most higher excited

levels, with ΛQn = Mn =
√
2n+ 1 (in Planck units) and smallest quantum gravitational

entropies SQn = 1/(2n+ 1).

(iii) De-excitation of the levels go from the central quantum trans-Planckian core of the

black hole with high n until n = 0 (the Planck scale), and then entering the

semiclassical/classical gravity exterior space-time region, more and more de-excited and

classical for increasing n, (the classical branch), with decreasing vacuum energy and a

continuum spectrum reaching asymptotically flat space-time. In the process of

classicalization, n increases from the Planck level (n = 0), Xn =
√

(2n+ 1) increases, the

huge and finite values of the central black hole vacuum energy and curvature diminish as

1/(2n+ 1), and vanish asymptotically for very huge n. This is coherently accompassed by

the increasing distances Ln =
√

(2n+ 1), and the increasing levels SGn = (2n+ 1) of the

Bekenstein-Hawking entropy which is a classical/semiclassical gravitational entropy, and it

is always un upper bound to the other entropies.

(iv) Recall that quantum back reaction effects, gravitational scattering near a event

horizon structure produces a quantum shift too (the shifted horizon) [26], [27], [28]. This

approach consistently describe too the cosmological phases from the pre-Planckian or

trans-Planckian quantum phase to the Planck scale and then to the post-Planckian

universe: Refs [1], [3].

(v) The identification of space-time (”IST”) have been investigated in the past and recent
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years at the level of semiclassical gravity [52], [53], [54], [55], [56], [25]. In our framework

here we have not used IST, but as already pointed in [1], [2], our results support CPT and

IST in the full quantum theory. In semiclassical gravity, the symmetric (or antisymmetric)

IST QFT provide a CPT symmetry of the theory. In the euclidean (imaginary time)

manifold, the differences between the four Kruskal space-time regions dissapear and they

became automatically identified. And in the central trans-Planckian region of the

hyperbolic (real time) quantum space-time, the four Kruskal regions merge into one single

region and became automatically identified.

Other approachs to the black hole interiors have been considered recently, see for example

[25], [57], [58]. In Refs [59], [60] a regular black hole interior is described classically with a

classical space- time geometry sourced by a maximal negative radial pressure.

Interestingly, (e.g in [57] and refs therein), the black hole interior model is regular too with

a de Sitter like geometry. These are effective like models and could help too to study to

disentangle the properties of the black hole interiors through different observational

gravitational signals.

In our work here, the black hole interior does appear as a fully quantum gravity region.

Interestingly enough, this feature also appears from a different approach using scaling

arguments in maximal entropic states eg Ref [61] , which shows the consistency of the

results. In our paper here, such feature is a direct consequence of the classical - quantum

gravity duality, which provides in addition that the black hole interior is necessarily

trans-Planckian. And from a fully quantum space-time description (a quantum algebra of

non-conmutative space-time instead of a space-time metric) we find that the interior is

totally regular and of constant curvature. This provides the picture that the black hole

interior is a truly quantum trans-Planckian vacuum, totally regular and of constant

curvature. In addition, the quantum Penrose diagram is new and had not been considered

before, as well as the quantum completion of the Gibbons-Hawking instanton, with the

quantum trans-Planckian core at the black hole center . These results allow better describe

and understand the total regularity of the quantum black hole space-time, eg the

non-singularity at the center, the description of such interior and exterior regions and their

connection to the constant curvature vacuum describing dark energy. The complete

partition function is new and allows to understand the discrete spectrum of the different

black hole regions, accompassed by the complete entropy and black hole evaporation stages.
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Is not our aim here to discuss a review of the black hole interior literature. Our work here

is in the context of trans-Planckian physics that does appear necessary to describe the

black hole interiors, which classical gravitational dual provide the black hole exteriors, and

thus a global unifying description of the space-time is provided, the same approach allows

the description of the very early cosmological phase before inflation, with its classical

gravitational dual (today dark energy).

X. CONCLUSIONS

• Overall, a consistent quantum picture of the black hole space-time does appear

from the internal central black hole regions which are the most quantum and trans-

Planckian, to the semiclassical and classical external regions until the asympotically

flat far regions from the black hole, together with their physical magnitudes and

spectrum: size, mass, partition function, gravitational entropies and temperatures

covering all mass range and gravity domains: quantum (trans-Planckian) gravity and

semiclassical/classical gravity domains.

• The quantum vacuum energy bends the space-time and produces a constant curvature

background in the central black hole region of Planck length radius lP . We find the

quantum discrete levels: length, mass vacuum energy, and gravitational entropy and

temperature from the black hole central trans-Planckian vacuum, passing through the

Planck scale, to the external semiclassical and classical exterior vacuum regions. The

gravitational entropy of the Universe today Stoday = (2n + 1) = 10122 is the absolute

upper bound to all entropies, in particular to all black hole entropies.

• The quantum space-time structure allows a new quantum region which is purely quan-

tum vacuum or zero-point Planckian and trans-Planckian energy and constant cur-

vature. This central quantum vacuum core is a de Sitter quantum trans-Planckian

vacuum described through the relevant quantum non-commutative coordinates and

the quantum hyperbolic structure.

• In the external black hole space-time, the discrete levels extend from the Planck scale

level (n = 0) and low n to the quasi-classical and classical levels (intermediate and

large n), tending asymptotically (very large n) to a classical continuum space-time.
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Consistently, these levels have larger gravitational (Gibbons-Hawking) entropy SGn =

(2n + 1), n = 0, 1, 2, ... and lower vacuum energy Λn = 1/(2n + 1). In the central

quantum trans-Planckian core of the black hole, the levels extend from the Planck

scale (n = 0) to the lengths smaller than the Planck scale, until the quantum highly

excited trans-Planckian levels (very large n) which are those of smaller entropy SQn =

1/(2n+ 1) and higher vacuum density ΛQn = (2n+ 1).

• There is no singularity at the black hole origin. First: the r = 0 mathematical

singularity is not physical: it is the result of extrapolation of the purely classical

(non quantum) General Relativity theory, out of its domain of physical validity. The

Planck scale is not merely a useful system of units but a physically meaningful scale:

the onset of quantum gravity; this scale precludes the extrapolation until zero time or

length. This is precisely what is expected from quantum trans-Planckian physics in

gravity: the smoothness of the classical gravitational singularities. Second: de Sitter

vacuum which is the vacuum interior region of the black hole is a smooth constant

curvature vacuum without any curvature singularity. Third: the small and a

trans-Planckian vacuum have a high but bounded trans-Planckian constant curvature

and therefore without singularity.

• There are no singularity boundaries at the quantum level at (T 2 −X2)(r = 0) = ±1
nor at (T 2−X2) = ±

√
2 . The quantum space-time extends without boundary beyond

the Planck hyperbolae (T 2−X2)(n = 0) = ±1 towards all levels. (T 2−X2) = ±
√
2 are

the quantum hyperbolae which replace the classical singularity: (T 2 −X2)classical(r =

0) = ±1. Moreover, the quantum hyperbolae (T 2−X2) = ±
√
2 lie outside the allowed

quantum hyperbolic levels (T 2−X2)n = (2n+1), n = 0, 1, 2, ..., and therefore they are

excluded at the quantum level: The singularity is removed out from the quantum space-

time. There is no singularity boundary in the quantum space-time, not at r = 0 = x∗,
not at any other place. The quantum Schwarzschild - Kruskal space-time is totally

regular.

• The quantum trans-Planckian core is present in all black holes, macroscopic and as-

trophysical ones. In the imaginary time manifold (instanton), it appears too, and

allows to complete the classical gravity Gibbons-Hawking instanton, which is cutted

at the horizon: The classical black hole instanton is thus regular but not complete.
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The black hole quantum instanton is regular and complete. The complete partition

function, temperature and entropy all reflect this feature and clearly include the highly

excited and dense trans-Planckian central region of radius lP , as well as the discrete

levels, density of black hole states and black hole decay rate.

• States with the Planck mass mP are not black holes, they are enterely quantum gravity

states, decaying in the way heavy particles or quantum strings do, in this case in

gravitons, other elementary particles and radiation. Black holes reaching the Planck

mass in the process of their evaporation undergo a phase transition into a pure (non

mixed) quantum state which decay in gravitons, particles and radiation.

• The results of this paper could provide insights for research directions and new under-

standing in quantum theory and gravity and for the searching of quantum gravitational

signals, for e-LISA [6] for instance, after the success of LIGO [7],[8], as well as for other

quantum signals in space- time, [50], [62], [63], [64], black holes in particular, for astro-

physical black holes and for ”quantum black holes”, or the last stages and ”remnants”

of black hole evaporation and black hole ”explosions”. One of the novel results of this

paper is that quantum physics is a inherent constituent of all black hole interiors, from

the horizon to the center, in particular in the most larger and astrophysical black holes.

It is a result of this paper too that the black hole interior trans-Planckian vacuum is

of the same nature of the very early cosmological vacuum: quantum, trans-Planckian

and of constant curvature, which classical gravity dual is a very dilute, very low energy

gravitational vaccum (today dark energy).
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