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Abstract

A precise physical description and understanding of the classical dual content of quantum

theory is necessary in many disciplines today: from concepts and interpretation to quantum tech-

nologies and computation. In this paper we investigate Quantum Entanglement with the new

approach APL Quantum 2, 016104 (2025) https://doi.org/10.1063/5.0247698 on dual Clas-

sicalization. Thus, the results of this paper are twofold: Entanglement and Classicalization

and the relationship between them. Classicalization truly occurs only under the action of

the Metaplectic group Mp(n) (Minimal Representation group, double covering of the Symplectic

group). The results of this paper are: (1) We compute and analyze Entanglement for different

types of coherent (coset and non coset) states and topologies: in the circle and the cylinder. We

project the entangled wave functions onto the even (+) and odd (-) irreducible Hilbert Mp(n)

subspaces, and compute their square norms: Entanglement Probabilities P++, P−−, P+−, (eg

in the same or in the different subspaces), and the Total sum of them. (2) Entanglements in the

circle: (i) of orthogonal states are ̸= 0 even for the control phase ρ = 0 and are preserved for any

phase ρ ̸= π/2. P+− is separable (entanglement is broken) only if ρ = 0. (ii) For coincident states,

entanglements are ̸= 0 and separable for any control parameter ρ ̸= 0. If ρ = 0, all three P++, P−−,

P+− vanish. (iii) The Entanglements of coset circle states depend on the angles and the coherent

complex displacement parameter α through a single variable z′ which condition on the disk |z′| < 1

guarantees both analyticity and normalization. (iv) Entanglement classicalization in the circle

is stronger for coset states than for non coset ones: a tail decreasing with increasing n is absent

in the non coset case. (3) Entanglement in the cylinder depends weakly on the angles (φ−φ′)

and strongly classicalizes: rapid exponential decay suppresion e−n2
for large n, stronger than in

the circle (be coset or not). It expresses in terms of Theta functions ϑ2

(
0, e−8

)
and ϑ3

(
0, e−8

)
in all classicalization projections in the degeneracy (equal states) limit. (4) Comparison with other

(non Mp(2)) Entanglements, as the Schrodinger cat states, show very clear differences, (eg. Figs

4 and 5). (5) The Antipodal and Non Antipodal Entanglements (as regulated by the phase

control parameter ρ = π and ρ = 0 respectively), are clearly different in all types (circle, cylinder,

coset or not) of orthogonal states studied here. The Antipodal Entanglement is the Minimal.

These theoretical and conceptual results can be of experimental and practical real-world interest.
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I. INTRODUCTION AND RESULTS

Quantum theory is at the center of science and technology today: The great success

of Quantum theory and its deep and wide impact transcends physics and its applications:

See for example Refs [1], [2], [3], [4] [5]. While the quantum wave nature of particles and

the intrinsic quantum uncertainty principle were mainly about the first quantum revolu-

tion, the superposition principle and quantum entanglement are at the heart of the second

quantum revolution at work. While quantum research is rapidly evolving in many different

directions and disciplines, it is necessary to have a precise modern physical understanding

and clear computational framework for the classical dual content of quantum theory:

This impacts from the conceptual and quantum interpretation measurements until quantum

technologies and computation research. Therefore, one fundamental question in Quantum

theory with interest for its meaning, observation and experimental research is the following:

Under which conditions Quantum theory does appear Classical, namely which are

the Classical dual sectors of the Quantum world.

Classical states are a particular case of Quantum theory and are dual states in the precise

sense of the general classical-quantum duality of Nature. Recently, in ApL Quantum 2025

Ref [6], we provided a precise answer to this problem within a novel approach: The minimal

group representation principle, which is uniquely realized by the Metaplectic group Mp(2d).

This group is the double covering of the Symplectic group Sp(2d) and its action inmediately

classicalizes the system. We performed an extensive study with different types of quantum

states on the circle and on the cylinder from which emerged too thatMp(2d) is the symmetry

group of the general classical-quantum duality of Nature.

In this paper we go beyond in our study of the Classical sectors of Quantum theory by

investigating the Entanglement for the quantum-classical dual states with topologies on

the circle and on the cylinder and different types of coherent (coset and non coset) states.

Thus, the results of this paper are on both:

Entanglement and Classicalization, and the relationship between them.

This is important too for the bridge between the classical and quantum information pro-

cessings and relates to a real-world problem.
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Discretization arises naturally and directly from the basic states of the metaplectic

representations: the decomposition of the Mp(2) group into its two irreducible represen-

tations span both: the even | 2n ⟩ and odd | 2n + 1 ⟩ states respectively, (n = 1, 2, 3 ...)

of the harmonic oscillator, totally covered by the metaplectic group. The two Mp(2) irre-

ducible subspaces contain both: the quantum and the classical dual sectors. For n → ∞,

the spectrum becomes naturally continuum as it must be.

A quantum state completely classicalizes its inherent quantum structure only under

the action of the Mp(n) (metaplectic) Group, (Minimal Representation Group). Clas-

sicalization is explicit in the decreasing exponential factors for large n arising in the Mp(2)

projections of the states: screenings e−2n, e−( 2n+1/2 ) or e−2n2
, e−( 2n+1/2 )2 (depending on the

topology, circle or cylinder states respectively). The Classical-Quantum Duality is realized

in the Mp(n) symmetry because of the complete covering of the Hilbert space: Each of

the two, even H(+) and odd H(−) sectors are local coverings, their sum being global, com-

pletely covering the whole Hilbert space H = H(+)⊕H(−). The two (+) and (−) sectors are

classical-quantum duals of each other and are entangled. This is also important in order to

include gravity at the Planck scale and beyond: quantum space-time and classical-quantum

gravity duality, Refs [12], [13], [14], [15], [16] which is general, irrespective of the number or

type of space-time dimensions or manifolds (with or without compactifications).

In this paper our focus and results are the following:

(1) In analogy and for comparison with the entanglement of the standard coherent

states in the number representation:

|n,m⟩ =
1√
2
( |n⟩ ⊗ |m⟩+ |m⟩ ⊗ |n⟩ ) ,

we project the states (be coherent or not) into the number representation but through the

basic states of the Metaplectic group Mp(n), namely:

∣∣Ψ(±) (ω)Ψ(±) (σ)
〉

=
1√
2

( ∣∣Ψ(±) (ω)
〉
⊗
∣∣Ψ(±) (σ)

〉
+
∣∣Ψ(±) (σ)

〉
⊗
∣∣Ψ(±) (ω)

〉 )
(1)

that is to say, with the application of the Minimal Group Representation which is precisely

given by the Metaplectic group Mp(n).
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(2) The entanglement of the item (1) with the basic even (+) and odd (-) states

of Mp(n) is compared through the degree of purity with the case of the (even and odd)

Schrodinger cat states:

|α,−α⟩ =
1√
2
( |α⟩ ⊗ |−α⟩ + |−α⟩ ⊗ |α⟩ ) .

(3) The entanglement of two states with the topology of the circle (or any other

state, coherent or not) when projected according to the Minimal Group Representation

(Metaplectic group) provides two possibilities: This is because from the point of view of

the metaplectic projection we have a general case entailing two analytical functions (σ, ω)

→ Ψ(ω)Ψ (σ), that is:

Ψ (ω)


Ψ(+) (ω) → H+

Ψ(−) (ω) −→ H−

and Ψ(σ)


Ψ(+) (σ) → H+

Ψ(−) (σ) −→ H−

which gives precisely, (with the Mp(n) schematic structure given above), states of the type

of Eq.(1).

As a consequence of a characteristic property of the Mp(n) group, this is the only case

where a single analytic function allows to preserve the uniqueness of the mapping with

a single analytic function, e.g. for σ −→ ω, then Ψ (σ) → Ψ(ω). Therefore:

lim
σ→ω

∣∣Ψ(+) (ω)Ψ(−) (σ)
〉
∼ 1√

2

[ ∣∣Ψ(+) (ω )
〉
⊗
∣∣Ψ(−) (ω )

〉
+
∣∣Ψ(+) (ω)

〉
⊗
∣∣Ψ(−) (ω)

〉 ]

This limit procedure must be taken explicitly in the projection for the cases of the states on

the cylinder, as we will see here in Section III.

(4) We compute and analyze the different projections in each Mp(2) even (+) and

odd (-) sector of the entangled wave functions with topologies in the circle and in the

cylinder. This provides for each topology three different entanglement possibilities depending

on whether states are entangled in the same subspaces or in the crossed ones, namely (++),

(- -), or (+ -), and the Total Entanglement of them. We compute too the corresponding

square norm Entanglement Probabilities : even-even P++, odd-odd P−−, and crossed

P+− Probabilities:
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(5) For the circle (London) states : The Entanglements P++ or P−− of the same

subspace states are similar (with cosh and cos functions for P++ and sinh, sin functions for

P−−, while the crossed P+− have both types of functions as it must be). We analyze the limits

of coincident states ∆ → 0, and of orthogonal states ∆ → π/2, being ∆ ≡ (φ− φ′), and the

role of the phase ρ (the admissible control parameter which is useful for the entanglement

experimental realizations).

For the coincident states (∆ → 0): The Entanglements P++, P−−, P+− are ̸= 0 and

separable (the entanglement is broken) for any phase ρ ̸= 0. While, all three P++, P−−,

P+− = 0 if ρ = 0. For the orthogonal states (∆ → π/2) : The Entanglements P++,

P−−, P+− are ̸= 0 even if ρ = 0. P++, P−−, P+− are preserved for any ρ ̸= π/2. P+− is

separable (the entanglement is broken) only if ρ = 0. Figures 2 and 3 and their captions

illustrate some of these results.

(6) The Entanglements of the new coset circle states |φ, α⟩ do depend on the

angles (φ, φ′) and on the complex coherent parameter α through the single variable

z′ = ω e i (φ−α∗/2 ), which condition on the disk |z′| < 1 does remarkably guarantee both

analyticity and normalization. This Entanglement clearly contains a decreasing tail as

n increases showing that the Entanglement classicalization is stronger in the coset

states than in the non coset (London) states, which we relate to the fact that these coset

circle states are truly coherent analytic and normalizable states, (while the London, ’t Hooft

states are not).

(7) The Entanglement of the cylinder states: (i) Rapid decay through exponential

suppresion factors ∝ e−n2
for large n, showing that in all cases the Cylinder Entanglement

strongly classicalizes. (ii) The low dependence of the Entanglement on the angular

variables (contained in ∆ = (φ − φ′)) in the limiting case of degeneracy (equality) of the

analytical functions describing the cylinder states : P++ and P−− are totally independent

of the angles (φ, φ′), while the crossed P+− entanglement does depend weakly on them.

(iii) The cylinder Entanglements express in terms of Theta functions ϑ2 (0, e
−8) and

ϑ3 (0, e
−8) in all classicalization projections in the degeneracy (equal states) limit. (iv)

Cylinder topology does classicalize the Entanglement stronger than the circle topology.

In Figure 1 we shortly summarize some of the main Entanglement and Classicalization

features of this paper both for the circle and cylinder topologies.
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(8) Comparison of Entanglements are performed for completeness: For instance,

Mp(2) Entanglement projections are compared with other (non Mp(2)) projection states as

the Schrodinger cat states: Differences are very clear as shown in Figures 4 and 5 and their

captions. The Antipodal and and Non Antipodal Entanglements, (as regulated by

the phase control parameter ρ = π and ρ = 0 respectively), are clearly different in the case

of orthogonal states for all types of orthogonal states studied here (being Schrodinger

cat or Mp(2) orthogonal states).

(9) Besides the theoretical and conceptual interest, the results of this paper should

have applications and implications for experimental entanglement work, connections of

classical and quantum treatments of information, interpretation of the quantum-classical

interaction, the quantum interpretation measurements, classical or quantum optimization,

to mention some of them. In Section VI Concluding Remarks we mention some outlook

and implications of our results.

This paper is organized as follows: In Section II we describe and compute the quan-

tum Entanglements of the phase states in the circle, its full global covering, the Entanglement

Probabilities and their classicalization. In Section III we fully compute and analyze the En-

tanglements of the Cylinder States, their Probabilities and show how their classicalization

occurs, finding very different and new properties with respect to the Entanglement and its

classicalization in the phase space of the circle. In Section IV we perform the complete

Entanglement for the general coset coherent states in the circle which allow to fully see the

Entanglement and classicalizations conditions with respect to topology, analyticity in the

disk of the wave functions and normalization, and compare with respect to the London (cir-

cle, phase space) states. In Section V we compare the Entanglements and Classicalization

we found here with those of the Schrodinger cat states and discusses the implications of the

Mp(2) results of the previous sections with the cat state results. Sections VI summarizes

Remarks and Conclusions.
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FIG. 1: Some Main New Features of Entanglements and Classicalization of this Paper.

Sections I and VI provide more Summary and explanation.
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II. ENTANGLEMENT OF COHERENT STATES IN THE CIRCLE

The classical states for the circle are coherent states in phase space, the angle variable,(or

so called London states). Let us consider two of these states |φ⟩, |φ′⟩ which in terms of the

harmonic oscillator eigenstates n,m are given by:

|φ ⟩ =
1

2π

∑
e−i φ n

n=0, 1, 2...

|n ⟩ (2)

|φ′ ⟩ =
1

2π

∑
e−i φ′ m

m=0, 1, 2...

|m ⟩ (3)

An entangled state can be defined naturally as

|Φ ⟩ ≡ 1√
2

(
|φ⟩ ⊗ |φ′⟩ + eiρ |φ′⟩ ⊗ |φ⟩

)
(4)

where the order of the states in Eq. (4) indicates the exchange of the angular coordinate (in

this case φ, φ′ ), and the phase ρ is an admissible control parameter which is very useful for

the experimental realization of entanglement.

Now, following the Minimal Group Representation consisting of the metaplectic group

Mp(2), we make the metaplectic projection of the entangled state. To this end, we perform

the Mp(2) product state :

∣∣Ψ(±) (ω)Ψ(±) (σ)
〉
∈ Mp (2) ,

∣∣Ψ(±) (ω)Ψ(±) (σ)
〉
=

1√
2

[ ∣∣Ψ(±) (ω)
〉
⊗
∣∣Ψ(±) (σ)

〉
+
∣∣Ψ(±) (σ)

〉
⊗
∣∣Ψ(±) (ω)

〉 ]

The even (+) and odd (−) Mp(2) states (irreducible Metaplectic representations) are given

by:

⟨φ|
∣∣Ψ(±) (ω)

〉
=



(
1− |ω|2

)1/4 ∑
n=0,1,2..

(ωeiφ/2)
2n

√
2n!

(+): even states

(
1− |ω|2

)3/4 ∑
n=0,1,2..

(ωeiφ/2)
2n+1

√
(2n+1)!

(-): odd states

(5a)
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Therefore, the total or complete projected state ⟨ φ| | Ψ(ω) ⟩ is given by:

⟨ φ| | Ψ(ω) ⟩ = ⟨ φ|
∣∣ Ψ(+) (ω)

〉
+ ⟨ φ|

∣∣ Ψ(−) (ω)
〉

(6)

⟨ φ | | Ψ(ω) ⟩ =

(
1− |z|2

)1/4
√
2π

∑
n=0,1,2..

(z/2)2n√
(2n) !

[
1 +

(
1− |z|2

)1/2 (z/2)√
2n+ 1

]
(7)

where z = ω eiφ.

Now, having the above expressions into account, we define in the Bargmann representa-

tion the following functions in order to perform the respective projections:

z1 ≡ ωeiφ → ⟨φ|
∣∣Ψ(±) (ω)

〉
≡ Ψ(±) (z1) , z′1 ≡ ωeiφ

′ → ⟨φ′|
∣∣Ψ(±) (ω)

〉
≡ Ψ(±) (z′1)

z2 ≡ σeiφ → ⟨φ|
∣∣Ψ(±) (σ)

〉
≡ Ψ(±) (z2) , z′2 ≡ σeiφ

′ → ⟨φ′|
∣∣Ψ(±) (σ)

〉
≡ Ψ(±) (z′2)

Therefore :

〈
Ψ(±) (ω)Ψ(±) (σ)

∣∣ |Φ⟩ =
1

2

[
Ψ(±) (z1)⊗Ψ(±) (z′2) + eiρΨ(±) (z′1)⊗Ψ(±) (z2)

]
Or, due to Eq. (7) using the complete projected states, we have:

⟨Ψ(ω)Ψ (σ)| |Φ⟩ = 1

2

(
1− |ω|2

)1/4 (
1− |σ|2

)1/4 ∑
n,m=0,1,2...

(ω∗/2)2n√
2n!

(σ∗/2)2m√
2m!

× (8)

×

[
e−2i(φn+φ′m)

(
1 +

(
1− |ω|2

)1/2 (ω∗e−iφ/2)√
2n+ 1

)(
1 +

(
1− |σ|2

)1/2 (σ∗e−iφ′
/2
)

√
2m+ 1

)
+

eiρe−2i(φ′n+φm)

(
1 +

(
1− |ω|2

)1/2 (ω∗e−iφ′
/2
)

√
2n+ 1

)(
1 +

(
1− |σ|2

)1/2 (σ∗e−iφ/2)√
2m+ 1

)]

A. Entanglement and Minimal Group Representation

The minimal group representation which is provided by the metaplectic group implies for

the circle states the crossed even (+) odd (-) explicit projection :
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〈
Ψ(+) (ω)Ψ(−) (ω)

∣∣ |Φ⟩ = 1

2

(
1− |ω|2

)
∑

n,m=0,1,2...

[
(ω∗/2)2(n+m)+1√
(2n)! (2m+ 1)!

(
e−i2nφe−i(2m+1)φ′

+ eiρe−i2nφ′
e−i(2m+1)φ

)]

and its square norm Probability P+− :

P+− =
∥∥〈Ψ(+) (ω)Ψ(−) (ω)

∣∣ |Φ⟩∥∥2 =
1

2

(
1− |ω|2

)2{
cosh

(
|ω|2

4

)
sinh

(
|ω|2

4

)
+

+cosh

(
|ω|2

4
cos∆

)
sinh

(
|ω|2

4
cos∆

)
cos ρ+ cos

(
|ω|2

4
sin∆

)
sin

(
|σ|2

4
sin∆

)
sin ρ

}

In what follows, we analyze the particular projections in each sector (even and odd) of

the entangled wave functions together with the corresponding square norm Probabilities

B. Entanglement Probabilities of the Even (+) and Odd (-) Hilbert space sectors

Considering that the basic states of Mp(n) solve the identity in each irreducible subspace

representation s = 1/4, 3/4, of the total Hilbert space, we will show the corresponding

expressions of the Entanglement Probabilities from the general wave function Eq. (8)

projected in each subspace for simplicity

- Entanglement Probability P++ of the Even (++) Sectors:

The explicit projected (+)(+) entangled expression of the London states wave function

is:

〈
Ψ(+) (ω)Ψ(+) (σ)

∣∣ |Φ⟩ =
1

2

(
1− |ω|2

)1/4 (
1− |σ|2

)1/4
∑

n,m = 0, 1, 2...

[
(ω∗e−iφ/2)

2n

√
2n!

(
σ∗e−iφ′

/2
)2m

√
2m!

+

(
ω∗e−iφ′

/2
)2n

√
2n!

(σ∗e−iφ/2)
2m

√
2m!

eiρ

]

Defining ∆ ≡ (φ− φ′) in the limit for the same variable : φ → φ′, ie ∆ → 0, and for

the orthogonal states, ie ∆ → π/2, the entanglement Probabilities P++ (strictly the norm
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square) considerably simplify as given explicitly in the Appendix I whose limits of interest

∆ → 0 (complete degeneration) and ∆ → π/2 are the following:

lim
∆→ 0

P++ =
1

2

√(
1− |ω|2

) (
1− |σ|2

)
cosh

(
|ω|2

4

)
cosh

(
|σ|2

4

)
(1− cos ρ)

lim
∆→π/2

P++ =
1

2

√(
1− |ω|2

) (
1− |σ|2

){
cosh

(
|ω|2

4

)
cosh

(
|σ|2

4

)
+ cos

(
|ω|2

4

)
cos

(
|σ|2

4

)
cos ρ

}

We see the role played by the phase ρ in the entanglement P++ which makes it non zero

iff ρ ̸= 0 for the case of the coincident states (∆ → 0), while the entanglement is non-zero

even if ρ = 0 for the orthogonal states (∆ → π/2).

For ρ = 0, we see that :

lim
∆→ 0

P++ = 0,

and

lim
∆→ π/2

P++ =
1

2

√(
1− |ω|2

) (
1− |σ|2

)
cosh

(
|ω|2

4

)
cosh

(
|σ|2

4

)
Therefore, the state is separable, that is to say, the entanglement is broken in this case.

- Entanglement Probability P+− of the Even-Odd (+ -) Sectors:

The London states crossed projected into the even (+) and odd (-) Metaplectic states

have the following explicit expression:

〈
Ψ(+) (ω)Ψ(−) (σ)

∣∣ |Φ⟩ =
1

2

(
1− |ω|2

)1/4 (
1− |σ|2

)3/4
∑

n, m = 0 ,1 ,2 ...

[
(ω∗e−iφ/2)

2n√
(2n)!

(
σ∗e−iφ′

/2
)2m+1√

(2m+ 1)!
+ eiρ

(
ω∗e−iφ′

/2
)2n

√
2n!

(σ∗e−iφ/2)
2m+1√

(2m+ 1)!

]

Now we see the role played by the phase ρ in the entanglement probability P+− in the

corresponding limits:

In the coincident limit :

lim
∆ → 0

P+− =
1

2

(
1− |ω|2

)1/2 (
1− |σ|2

)3/2
cosh

(
|ω|2

4

)
sinh

(
|σ|2

4

)
(1− cos ρ)
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We see the above expression is separable (the entanglement is broken) for any value of

the phase ρ ̸= 0 while lim
∆→ 0

P+− = 0 for ρ = 0.

In the orthogonal limit :

lim
∆→π/2

P+− =
1

2

(
1− |ω|2

)1/2 (
1− |σ|2

)3/2{
cosh

(
|ω|2

4

)
sinh

(
|σ|2

4

)
+ cos

(
|ω|2

4

)
sin

(
|σ|2

4

)
sin ρ

}

In this case the entanglement is preserved for any value of ρ ̸= 0. Only it is separable

(the entanglement is broken) for ρ = 0.

- Entanglement Probability P−− of the Odd (- -) Sectors :

For the odd Hilbert space sector, the projection of the circle states is given by:

〈
Ψ(−) (ω)Ψ(−) (σ)

∣∣ |Φ⟩ =
1

2

(
1− |ω|2

)3/4 (
1− |σ|2

)3/4
∑

n, m = 0, 1, 2 ...

[
(ω∗eiφ/2)

2n+1√
(2n+ 1)!

(
σ∗eiφ

′
/2
)2m+1√

(2m+ 1)!
+

(
ω∗eiφ

′
/2
)2n+1√

(2n+ 1)!

(σ∗eiφ/2)
2m+1√

(2m+ 1)!
eiρ

]

Now, we see the role played by the phase ρ in the entanglement probability P−− from the

corresponding limits:

In the coincident limit:

lim
∆ → 0

P−− =
1

2

(
1− |ω|2

)1/2 (
1− |σ|2

)3/2
sinh

(
|ω|2

4

)
sinh

(
|σ|2

4

)
(1− cos ρ)

In the limit of coincident states P−− is separable (the entanglement is broken) for any

value of the phase ρ ̸= 0, while it is vanishes for ρ = 0 :

lim
∆ → 0

P−− = 0 when ρ = 0

In the orthogonal limit:

lim
∆ → π/2

P−− =
1

2

[(
1− |ω|2

) (
1− |σ|2

)]3/2{
sinh

(
|ω|2

4

)
sinh

(
|σ|2

4

)
+ sin

(
|ω|2

4

)
sin

(
|σ|2

4

)
cos ρ

}

In this case the entanglement is preserved for any value of ρ ̸= π/2 (within the respective

modulus), while the entanglement is broken for ρ = π/2.
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It must be noticed, and as it can be seen in Figure 1: For the coincident states ∆ = 0, the

antipodal entanglement (regulated by the control parameter ρ = π) generates a effect

of minimum entanglement probability in all the Mp(2) projections . This is in marked

contrast to the entanglement of orthogonal states ∆ = π/2 in Figure 3 where the antipodal

entanglement (ρ = π) is relevant, inverting the maxima of the probability.

C. Full Entangled Probability

For completeness, to calculate the square norm in the full entangled state, we introduce

a polar decomposition for the functions of the states of Mp(2), namely

ω = |ω| eiθ1 , σ = |σ| eiθ2

Then:

∥⟨Ψ(ω)Ψ (σ)| |Φ⟩∥2 = 1

4

(
1− |ω|2

)1/2 (
1− |σ|2

)1/2 ∑
n,m=0,1,2...

(
|ω|2 /4

)2n
2n!

(
|σ|2 /4

)2m
2m!

×

×

(
1 +

(
1− |ω|2

)1/2 cos (θ1 + φ)√
2n+ 1

|ω|+
(
1− |ω|2

)
4 (2n+ 1)

|ω|2
)

(
1 +

(
1− |σ|2

)1/2 cos (θ2 + φ′)√
2m+ 1

|σ|+
(
1− |σ|2

)
4 (2m+ 1)

|σ|2
)
+

+

(
1 +

(
1− |ω|2

)1/2 cos (θ1 + φ′)√
2n+ 1

|ω|+
(
1− |ω|2

)
4 (2n+ 1)

|ω|2
)

(
1 +

(
1− |σ|2

)1/2 cos (θ2 + φ)√
2m+ 1

|σ|+
(
1− |σ|2

)
4 (2m+ 1)

|σ|2
)
+

+cos (ρ+ (φ′ − φ) (n−m)) (AB − CD )
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where :

A =
1

2

[
2 +

(
1− |ω|2

)1/2 cos (θ1 + φ)√
2n+ 1

|ω|+
(
1− |σ|2

)1/2 cos (θ2 + φ)√
2m+ 1

|σ|+(
1− |σ|2

)1/2 (
1− |ω|2

)1/2
√
2n+ 1

√
2m+ 1

|ω| |σ|
2

cos (θ1 − θ2)

]

B =
1

2

[
2−

(
1− |ω|2

)1/2 cos (θ1 + φ′)√
2n+ 1

|ω|+
(
1− |σ|2

)1/2 cos (θ2 + φ′)√
2m+ 1

|σ|+(
1− |σ|2

)1/2 (
1− |ω|2

)1/2
√
2n+ 1

√
2m+ 1

|ω| |σ|
2

cos (θ2 − θ1)

]

C =
1

2

[ (
1− |ω|2

)1/2 sin (θ1 + φ)√
2n+ 1

|ω| −
(
1− |σ|2

)1/2 sin (θ2 + φ)√
2m+ 1

|σ|+(
1− |σ|2

)1/2 (
1− |ω|2

)1/2
√
2n+ 1

√
2m+ 1

|ω| |σ|
2

sin (θ1 − θ2)

]

D =
1

2

[
−
(
1− |ω|2

)1/2 sin (θ1 + φ′)√
2n+ 1

|ω|+
(
1− |σ|2

)1/2 sin (θ2 + φ′)√
2m+ 1

|σ|+(
1− |σ|2

)1/2 (
1− |ω|2

)1/2
√
2n+ 1

√
2m+ 1

|ω| |σ|
2

sin (θ2 − θ1)

]

As we can see, in the general case the total output of the London entanglement states is

evidently manifested with the highest degree of entanglement.

III. ENTANGLEMENT OF COHERENT STATES IN THE CYLINDER

As we pointed out recently in Ref [6] in order to introduce the Coherent States for a

quantum particle on the cylinder geometry, it is possible to follow the Barut–Girardello

construction and seek the Coherent State as the solution of the eigenvalue equation:

X | ξ ⟩ = ξ| | ξ ⟩

with the complex parameter ξ, similarly to the standard case, and

X = e i (φ̂+ Ĵ)
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FIG. 2: Probabilities of the Entanglement of two circle (London) states with ∆ = 0 (φ =

φ′): coincident states projected onto the Metaplectic group (Minimal Representation Group):

Classicalization: Left side with the control entanglement phase ρ = 0. Right side with ρ = π:

e.g Antipodal Entanglement . In this case, the Antipodal condition (regulated by the control

parameter ρ = π) does not modify essentially any of the Entanglement Mp (2) Classicalizations.
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FIG. 3: Probabilities of the Entanglement of two circle London states ∆ = π/2 (φ = φ′ +π/2):

orthogonal states projected onto the Metaplectic group (Minimal Representation Group): Clas-

sicalization. Left side entanglement with the control paramenter phase ρ = 0. Right side with

ρ = π: Antipodal Entanglament. Here the antipodal condition is relevant, inverting the max-

ima of the Entanglement Probabilities.
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In order to analyze the Coherent State of a particle in the cylinder in the context of the

Minimal Group Representation, we express the coherent states as:

| ξ ⟩ =
∞∑

j = −∞

e( l−i φ )j e−j2/2 | j ⟩ (9)

(i) If | j ⟩ ∼ |n ⟩ , and for the Metaplectic s = 1/4 states
∣∣Ψ(+) (ω)

〉
:

⟨ ξ |
∣∣Ψ(+) (ω)

〉
=
(
1− |ω|2

)1/4 ∞∑
m = −∞

∑
n = 0,1,2...

(ω/2)2n√
2n !

e(l−iφ)m e−2m2 ⟨m| |2n⟩

=
(
1− |ω|2

)1/4 ∑
n = 0,1,2..

(
ω e (l−iφ)/2

)2n
√
2n !

e−2n2

(ii) Similarly, for the s = 3/4 Metaplectic states
∣∣Ψ(−) (ω)

〉
:

⟨ ξ |
∣∣Ψ(−) (ω)

〉
=
(
1− |ω|2

)3/4 ∞∑
m =−∞

∑
n = 0,1,2...

(ω/2)2n+1√
(2n+ 1) !

e(l−iφ)m e−m2/2 ⟨m| |2n+ 1⟩

=
(
1− |ω|2

)3/4 ∑
n = 0,1,2...

(
ω e(l−iφ)/2

)2n+1√
(2n+ 1) !

e−(2n+1)2/2

We see that the scalar product projections taken with the cilinder ⟨ ξ | space configuration

states are similar to the projections taken with the circle ⟨φ | phase space states, but in

contrast they contain weight functions: e−2n2
and e−(2n+1)2/2, which drastically attenuate

the scalar products when n → ∞:

⟨ ξ |
∣∣Ψ(±) (ω)

〉
=



(
1− |ω|2

)1/4 ∑
n = 0,1,2...

(ω e(l−iφ)/2 )
2n

√
2n !

e−2n2
even states

(
1− |ω|2

)3/4 ∑
n = 0,1,2...

(ω e (l−iφ)/2 )
2n+1

√
(2n+1) !

e− (2n+1)2/2 odd states

(10a)

Consequently, for the total state :

|Ψ(ω) ⟩ =
∣∣Ψ(+) (ω)

〉
+
∣∣Ψ (−) (ω)

〉
, (11)
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we have:

⟨ ξ | |Ψ(ω) ⟩ =
(
1− |ω|2

)1/4 ∑
n = 0,1,2...

(
ω e(l−iφ)/2

)2n
√
2n !

e−2n2

[
1 +

(
1− |ω|2

)1/2 ω e (l−iφ)

√
2n+ 1

e−(2n+1/2)

]
(12)

In order to simplify, in analogy with the previous case, we define in the Bargmann

representation

z1 ≡ ωe(l+iφ) → ⟨ ξ|
∣∣Ψ(±) (ω)

〉
≡ Ψ(±) (z1) , z′1 ≡ ωe(l

′+iφ′) → ⟨ ξ′|
∣∣Ψ(±) (ω)

〉
≡ Ψ(±) (z′1)

z2 ≡ σe(l+iφ),→ ⟨ ξ|
∣∣Ψ(±) (σ)

〉
≡ Ψ(±) (z2) , z′2 ≡ σe(l

′+iφ′) → ⟨ ξ′|
∣∣Ψ(±) (σ)

〉
≡ Ψ(±) (z′2)

Then, the wave entangled projected state is expressed as :〈
Ψ(±) (ω)Ψ(±) (σ)

∣∣ |Φ⟩ =
1

2

(
Ψ(±) (z1)⊗Ψ(±) (z′2) + eiρ Ψ(±) (z′1)⊗Ψ(±) (z2)

)
Consequently, the full projected entangled wave function takes the form:

⟨Ψ(ω)Ψ (σ)| |Φ⟩ = 1

2

(
1− |ω|2

)1/4 (
1− |σ|2

)1/4 ∑
n,m=1,2...

(ω∗/2)2n√
2n!

(σ∗/2)2m√
2m!

e−2 (n2+m2)×

(13)

×

[
e2((l−iφ)n+(l′−iφ′)m)

(
1 +

(
1− |ω|2

)1/2 (ω∗ e (l−iφ)/2
)

√
2n+ 1

e−(2n+1/2)

)
(
1 +

(
1− |σ|2

)1/2 (σ∗ e (l′−iφ′)/2
)

√
2m+ 1

e−(2m+1/2)

)
(14)

+eiρe2((l−iφ)m+(l′−iφ′)n)

(
1 +

(
1− |ω|2

)1/2 (ω∗ e (l′−iφ′)/2
)

√
2n+ 1

e−(2n+1/2)

)
(
1 +

(
1− |σ|2

)1/2 (σ∗ e (l−iφ)/2
)

√
2m+ 1

e−(2m+1/2)

)]
(15)

A. Entanglement and Minimal Group Representation in the Cylinder

In this case, we will analyze the unique and fundamental projection due to the underlying

metaplectic structure for each of the particular sectors of the full Hilbert space. The wave

function and the probability (the square norm in the strict sense) will be consequently

studied.
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• In this case we must emphasize the importance of the exponential factors that behave

as ∝ e−n2
which are suppression factors for large n and produce a rapid decay of the

analyzed functions, that is to say, the system truly classicalizes.

• The other important point is the limit ω → σ which is the degeneracy of the analytical

functions describing the basic states of Mp(2): in the case of the entanglement proba-

bility P+− for the even-odd sectors (+−) it is an unique and fundamental projection

leaving only a vestige of the circular angular variables as we will see explicitly in what

follows:

B. Entanglement Probability P+− for the crossed Even-Odd (+-) sectors

In this case the Mp(n) projected wave function takes the form

〈
Ψ(+) (ω)Ψ(−) (σ)

∣∣ |Φ⟩ =
1

2

(
1− |ω|2

)1/4 (
1− |σ|2

)3/4 ∑
n,m = 0, 1, 2...

(ω∗/2)2n√
2n!

(σ∗/2)2m√
2m!

e−4 (n2+m2)×

(16)

×

[
e2((l−iφ)n+(l′−iφ′)m)

(
σ∗ e (l′−iφ′)/2

)
√
2m+ 1

e−(2m+1/2) + eiρe2((l−iφ)m+(l′−iφ′)n)

(
σ∗ e (l−iφ)/2

)
√
2m+ 1

e−(2m+1/2)

]

The square norm Probability P+−

P+− ≡
∥∥〈Ψ(+) (ω)Ψ(−) (σ)

∣∣ |Φ⟩∥∥2 = 1

2

(
1− |ω|2

)1/2 (
1− |σ|2

)3/2
(17)

∑
n,m=0,1,2...

(
|ω|2 /4

)2n
2n!

(
|σ|2 /4

)2m+1

(2m+ 1)!
e−4 (n2+m2)·

·e−(4m+1)

[ (
e4(ln+l′(m+1/2)) + e4(l

′n+l(m+1/2))
)

+ 2 e2(l+l′)(n+m+1/2) cos

(
2

(
∆(m− n)− ρ+ 1

2

))]

Let us notice the low dependence on the angular degeneracies (contained in ∆) of the

entanglement expressions for the different projections in this case.

We consider now the limit ω → σ :
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lim
ω→σ

〈
Ψ(+) (ω)Ψ(−) (σ)

∣∣ |Φ⟩ = lim
ω→σ

{
1

2

(
1− |ω|2

)1/4 (
1− |σ|2

)3/4 ∑
n,m=0,1,2...

(ω∗/2)2n√
2n!

(σ∗/2)2m+1

√
2m+ 1!

×

(18)

×e−4 (n2+m2)e−(2m+1/2)
[
e2((l−iφ)n+(l′−iφ′)m) e (l′−iφ′) + eiρe2((l−iφ)m+(l′−iφ′)n) e (l−iφ)

]}
The corresponding norm square Probability is :

lim
ω→σ

∥∥〈Ψ(+) (ω)Ψ(−) (σ)
∣∣ |Φ⟩∥∥2 = (19)

= lim
ω→σ

{
1

2

(
1− |ω|2

)1/2 (
1− |σ|2

)3/2 ∑
n,m = 0, 1, 2 ...

(
|ω|2 /4

)2n
2n!

(
|σ|2 /4

)2m+1

(2m+ 1)!
e−4 (n2+m2)·

·e−(4m+1)

[(
e4(ln+l′(m+1/2)) + e4(l

′n+l(m+1/2))
)

+ 2 e2(l+l′)(n+m+1/2) cos

(
2

(
∆(m− n)− ρ+ 1

2

))]}

=
∑

n,m = 0, 1, 2 ...

δ2n,2m+1 e−4 (n2+m2)·

e−(4m+1)

[(
e4(ln+l′(m+1/2)) + e4(l

′n+l(m+1/2))
)

+ 2 e2(l+l′)(n+m+1/2) cos

(
2

(
∆(m− n)− ρ+ 1

2

))]
= [ 1 + cos (− (∆ + ρ+ 1 ) ) ]

∑
n = 0, 1, 2 ...

e−8 (n2+3/4) 2 e4 ( l
′ + l )n

When (l′ + l) = 0 the entanglement Probability reduces to :

lim
ω→σ

∥∥〈Ψ(+) (ω)Ψ(−) (σ)
∣∣ |Φ⟩∥∥2 =

(
1 + ϑ3 (0, e

−8)

e6

)
(1 + cos (∆ + ρ+ 1))

where ϑ3 (0, e
−8) is the respective Theta function. We can immediately see the dependence

of the norm square on the angle variables (φ, φ′) through ∆ = (φ− φ′) in the above limit.

C. Entanglement Probability P++ for the Even (++) sectors

In this case the wave function is

〈
Ψ(+) (ω)Ψ(+) (σ)

∣∣ |Φ⟩ = 1

2

(
1− |ω|2

)1/4 (
1− |σ|2

)1/4
(20)∑

n,m=0,1,2...

(ω∗/2)2n√
2n!

(σ∗/2)2m√
2m!

e−2 (n2+m2)
[
e2(ln+l′m−i(φn+φ′m)) + eiρe2(ln+l′m−i(φn+φ′m))

]
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And the norme square Probability is:

∥∥〈Ψ(+) (ω)Ψ(+) (σ)
∣∣ |Φ⟩∥∥2 =

1

2

(
1− |ω|2

)1/2 (
1− |σ|2

)1/2
(21)

∑
n,m = 0, 1, 2 ...

(
|ω|2 /4

)2n
2n!

(
|σ|2 /4

)2m
2m!

e−4 (n2+m2)× (22)

×
[
e4 ( ln+l′m ) + e 4 ( lm+l′ n ) + 2 e 2( l+l′ ) (m+n ) cos ( 2∆ (m− n ) + ρ )

]
We can see in all the cases the expressions for the entanglement Probabilities are similar.

For the limit ω → σ :

lim
ω→σ

∥∥〈Ψ(+) (ω)Ψ(+) (σ)
∣∣ |Φ⟩∥∥2 = 1

2
(23)∑

n,m=0,1,2...

δn,me
−4 (n2+m2)

[
e4(ln+l′m) + e 4 ( lm+l′n) + 2 e2 ( l+l′ )(m+n ) cos ( 2∆ (m− n) + ρ )

]
=

∑
n = 0, 1, 2...

e−8n2+4n ( l+l′ ) ( 1 + cos ρ ) (24)

We can see immediately that there are no dependence of the norm square entan-

glement Probability on the angle variables (φ, φ′) through ∆. Consequently, when

(l′ + l) = 0, then :

lim
ω→σ

∥∥〈Ψ(+) (ω)Ψ(+) (σ)
∣∣ |Φ⟩∥∥2 =

[
1 + ϑ3

(
0, e−8

) ]
(1 + cos ρ)

D. Entanglement Probability P−− for the Odd (- -) sectors

Finally, as before, the wave function is

〈
Ψ(−) (ω)Ψ(−) (σ)

∣∣ |Φ⟩ = 1

2

(
1− |ω|2

)3/4 (
1− |σ|2

)3/4
(25)∑

n,m=0,1,2...

(ω∗/2)2n+1

√
2n+ 1!

(σ∗/2)2m+1

√
2m+ 1!

e−4 (n2+m2)e−2(m+n+1/2)×[
e2((l−iφ)(n+1)+(l′−iφ′)(m+1)) + eiρe2((l−iφ)(m+1)+(l′−iφ′)(n+1))

]

And the respective norm square is:
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∥∥〈Ψ(−) (ω)Ψ(−) (σ)
∣∣ |Φ⟩∥∥2 = 1

2

(
1− |ω|2

)3/2 (
1− |σ|2

)3/2
(26)

∑
n,m=0,1,2...

(
|ω|2 /4

)2n+1

2n+ 1!

(
|σ|2 /4

)2m+1

2m+ 1!
e−4 (n2+m2)e−4(m+n+1/2)×

×
{[

e4(l(n+1/2)+l′(m+1/2)) + e4(l
′(n+1/2)+l(m+1/2))

]
+ 2 e2(l+l′)(m+n+1) cos (2 (∆(m− n) + ρ))

}
The limit ω → σ is :

lim
ω→σ

∥∥〈Ψ(−) (ω)Ψ(−) (σ)
∣∣ |Φ⟩∥∥2 = 1

2

∑
n,m=0,1,2...

δm,ne
−4 (n2+m2)e−4(m+n+1/2)× (27)

×
{[

e4(l(n+1/2)+l′(m+1/2)) + e4(l
′(n+1/2)+l(m+1/2))

]
+ 2 e2(l+l′)(m+n+1) cos (2 (∆(m− n) + ρ))

}
=

=
∑

n=0,1,2...

e−8(n2+n+1/4) e4(l+l′)(n+1/2) [1 + cos (2 ρ)] (28)

Again, as in the limit ω → σ for the even (++) states the odd-odd (- -) Entanglament is

independent of the angular variables (φ, φ′) through ∆. When l + l′ = 0 we have :

lim
ω→σ

P−− =
1

2
ϑ2

(
0, e−8

)
( 1 + cos 2ρ )

Let us notice the low dependence on the angular degeneracies (contained in ∆) of the

entanglement expressions for the different projection classicalizations in this case.

IV. ENTANGLEMENT OF THE COSET COHERENT STATES IN THE CIRCLE

A. Coset Coherent States in the Circle

For the sake of completeness, let us first summarize the steps to follow for the determi-

nation of the coset coherent states:

(i) The Coset G/H identification → E ( 2 ) /T2, being T2 the group of translations

{gx, gy} ∈ T2.

(ii) The Fiducial vector determination: It is annihilated by all the generators h of the

stability subgroupH and for instance, invariant under the action ofH.We propose: | A0 ⟩ =

A (z, x, y) |φ⟩ where |φ⟩ is the London (circle) state, that is expanded in the |n⟩ state of the
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harmonic oscillator and

A (z, x, y)(±) =
(
ez ± e−z

)
x +

(
∓ez + e−z

)
y,

such that we can see: (ex + ey)A (z, x, y)(±) = 0

(iii) The coherent state is defined as the action of an element of the coset group on the

fiducial vector |A0⟩, consequently the coherent state (still unnormalized yet) takes the form:

e−α∂φ |A0⟩ ==
1√
2π

S (α, φ)
∑

n=0,1,2..

e−i(φ−α/2)n |n⟩︸ ︷︷ ︸
|φ−α/2⟩

=
1√
2π

S (α, φ) |φ− α/2 ⟩ (29)

where α ∈ C is an arbitrary complex parameter in the element of the coset, which must be

adjusted after normalization, being

S (α, φ) ≡ (A+ cosα + A− sinα)

This is the most general coherent state from the Klauder-Perelomov construction which

normalization takes the form

⟨β, φ′| |α, φ⟩ =
1

2π

S (β∗, φ′) S (α, φ)

1− e− i (φ−φ′ − (α−β∗)/2 )

Then, the state is fully normalizable for φ → φ′ iff the parameter α have Imα ̸= 0 :

| |α, φ⟩ |2 =
1

2π

S (α∗, φ) S (α, φ)

1− e− i(α∗ −α)/2
(30)

where:

S (α∗, φ)S (α, φ) =
(
x2 + y2

)
cosh (2 Imα)−

(
x2 − y2

)
sin 2 (Reα− φ)+ 2x y cos 2 (Reα− φ)

Consequently, it solves the problem of the London states that are overcomplete but clearly

not normalizable when φ → φ′:

⟨φ| |φ′⟩ =
1

2π

∑
n=0,1,2..

ei(φ−φ′)n =
1

2π

1

1− e−i(φ−φ′)
(31)

We see explicitely from these expressions Eq.(30), Eq.(31) how the general coherent states

on the circle |α, φ⟩ (with the coherent characteristic complex parameter α) solve the problem

of the non normalizability of the known (London, ’t Hooft) |φ⟩ states in the circle.
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From Eq.(30) the normalized state coherent state ⟨φ| |φ′⟩ is:

|α, φ⟩ =
√

1− e− Imα ei argS︸ ︷︷ ︸
N

∑
n=0,1,2..

e−i(φ−α/2)n |n⟩ (32)

The identity resolved in a weak sense always for Imα > 0 clearly showing the role played

by the coherent state characteristic complex parameter α.

B. Action of the Mp(2) Group on the Coset States in the Circle

Again, let us look at the sector s = 1/4 of the Hilbert space spanned by the Mp(2)

coherent states (unnormalized), the basic state is

∣∣Ψ(+) (ω)
〉
=
(
1− |ω|2

)1/4 ∑
n=0,1,2..

(ω/2)2n√
2n!

| 2n ⟩

On the other hand:

⟨α, φ| = N ∗
∑

n=0,1,2..

ei(φ−α∗/2)n ⟨n | (33)

Therefore, we have

⟨α, φ|
∣∣Ψ(+) (ω)

〉
=

(
1− |ω|2

)1/4
√
2π

∑
n=0,1,2..

(
ωei(φ−α∗/2)/2

)2n√
(2n)!

=

(
1− |ω|2

)1/4
√
2π

∑
n=0,1,2..

(z′/2)2n√
(2n)!

(34)

where

ω e i(φ−α∗/2 ) = z e−i α∗/2 ≡ z′,

and we see that the analytic function in the disc is now modified by the complex phase

(φ− α∗/2 ).

Similarly, for the sector s = 3/4 of the Mp(2) states, that is the odd (-) states, we have:

⟨α, φ|
∣∣Ψ(−) (ω)

〉
=

(
1− |ω|2

)3/4
√
2π

∑
n=0,1,2..

(
ωei(φ−α∗/2)/2

)2n+1√
(2n+ 1)!

=

(
1− |ω|2

)3/4
√
2π

∑
n=0,1,2..

(z′/2)2n+1√
(2n+ 1)!

(35)
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Notice that by taking the scalar product between the coset coherent state |α, φ⟩ and

the Mp(2) coherent states
∣∣Ψ(−) (ω)

〉
, we obtain two non-equivalent expansions in terms

of analytical functions on the disk for the sectors of the minimal representations s = 1/4

and s = 3/4: even and odd n states respectively, in the eigenstaes |n ⟩ of the harmonic

oscillator.

Consequently,
(
ω e i (φ−α∗/2 ) ≡ z′

)
:

⟨α, φ|
∣∣Ψ(±) (z′)

〉
=



(
1− |z′|2

)1/4 ∑
n=0,1,2..

(z′/2)2n√
2n!

(+): even states

(
1− |z′|2

)3/4 ∑
n=0,1,2..

(z′/2)2n+1√
(2n+1)!

(-): odd states

(36a)

Therefore, for the total projected state, ⟨ α, φ | | Ψ(z′) ⟩ :

⟨ α, φ| | Ψ(z′) ⟩ = ⟨ α, φ|
∣∣ Ψ(+) (z′)

〉
+ ⟨ α, φ|

∣∣ Ψ(−) (z′)
〉
, (36b)

We have

⟨α, φ| |Ψ(z′) ⟩ =
(
1− |z′|2

)1/4 ∑
n=0,1,2..

(z′/2)2n√
2n!

[
1 +

(
1− |z′|2

)1/2 (z′/2)√
2n+ 1

]
(37)

Let us notice the following observations:

(i) The analyticity condition of the function ⟨α, φ| |Ψ(z′)⟩ on the disk now constrained

taking into account | z′| = |ω| e− Imα/2 < 1 occurs under the already accepted condition

arising from the normalization function.

(ii) The topology of the circle induced by the coset coherent state |α, φ⟩ Eq. (32) not

only modifies the phase of ω (e.g: ω ei (φ−α∗/2 ) = z′ ) but also the ratio of the disc due the

displacement generated by the action of the coset.

(iii) The square norm of Eq.(37) is easily calculated giving as a result the function:

| ⟨α, φ| |Ψ(z′)⟩ |2 =
(
1− | z′|2

)1/2
cosh

(
|z′|2

2

)
+
(
1− |z′|2

)3/2
sinh

(
|z′|2

2

)
+

+
(
1− | z′|2

)1/2
Re (z′)

∑
n = 0 ,1 ,2..

|z′/2| 4n

2n ! (2n+ 1)
,
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where z′ = ω e i (φ−α∗/2 ). It shows a decreasing tail as n increases, and the analyticity, in

this case in the disc |z′| < 1, with the same comments as in the items (i)-(ii) above.

Les us now consider the Entanglement in this case. We define now by analogy with

the London states, the variables for the coset circle states in the Bargmann representation :

z1 ≡ ω e i (φ−α∗/2 ) → ⟨φ, α|
∣∣Ψ(±) (ω)

〉
≡ Ψ(±) (z1) ,

z′1 ≡ ω e i (φ′−α′∗/2 ) → ⟨φ′, α′|
∣∣Ψ(±) (ω)

〉
≡ Ψ(±) (z′1)

z2 ≡ σe i (φ−α∗/2 ) → ⟨φ, α|
∣∣Ψ(±) (σ)

〉
≡ Ψ(±) (z2)

z′2 ≡ σe i (φ′−α′∗/2 ) → ⟨φ′, α′|
∣∣Ψ(±) (σ)

〉
≡ Ψ(±) (z′2)

Then, the Entanglement expresses as:〈
Ψ(±) (ω)Ψ(±) (σ)

∣∣ |Φ⟩ = 1

2

(
Ψ(±) (z1)⊗Ψ(±) (z′2) + eiρΨ(±) (z′1)⊗Ψ(±) (z2)

)
Explicitly, for the completely projected states, namely, the full entangled wave function,

we have:

⟨Ψ(ω)Ψ (σ)| |Φ⟩ =
1

2
Z

1/4
1 Z

′ 1/4
2

∑
n,m=1,2...

(z∗1/2)
2n

√
2n!

(z′ ∗2 /2)2m√
2m!

×

(
1 + Z

1/2
1

(z∗1/2)√
2n+ 1

)(
1 + Z

′ 1/2
2

(z′ ∗2 /2)√
2m+ 1

)
+

1

2
Z

′ 1/4
1 Z

1/4
2

∑
n,m=1,2 ...

(z′ ∗1 /2)2n√
2n!

(z∗2/2)
2m

√
2m!

×

eiρ
(
1 + Z

′ 1/2
1

(z′ ∗1 /2)√
2n+ 1

)(
1 + Z

1/2
2

(z∗2/2)√
2m+ 1

)
(38)

where the following convenient notation have been introduced:

Z1 ≡ 1− |z1|2 , Z ′
1 ≡ 1− |z ′

1|
2
, Z2 ≡ 1− |z2|2 , Z ′

2 ≡ 1− |z ′
2|

2
(39)

And the full Entanglement Probability takes the following form:

∥⟨Ψ(ω)Ψ (σ)| |Φ⟩∥2 =

{
1

2
Z

1/4
1 Z

′ 1/4
2

∑
n,m=1,2...

(z∗1/2)
2n

√
2n!

(z′∗2 /2)
2m

√
2m!

×

(
1 + Z

1/2
1

(z∗1/2)√
2n+ 1

)(
1 + Z

′ 1/2
2

(z′∗2 /2)√
2m+ 1

)
+

1

2
Z

′ 1/4
1 Z

1/4
2

∑
n,m=1,2 ...

(z′∗1 /2)
2n

√
2n!

(z∗2/2)
2m

√
2m!

×

eiρ
(
1 + Z

′ 1/2
1

(z′∗1 /2)√
2n+ 1

)(
1 + Z

1/2
2

(z∗2/2)√
2m+ 1

)
× 1

2
Z

1/4
1 Z

′ 1/4
2

∑
n,m=1,2...

(z1/2)
2n

√
2n!

(z′2/2)
2m

√
2m!

×(
1 + Z

1/2
1

(z1/2)√
2n+ 1

)(
1 + Z

′ 1/2
2

(z′2/2)√
2m+ 1

)
+

+
1

2
Z

′ 1/4
1 Z

1/4
2

∑
n,m=1,2...

(z′1/2)
2n

√
2n!

(z2/2)
2m

√
2m!

× e−iρ

(
1 + Z

′ 1/2
1

(z ′
1/2)√

2n+ 1

)(
1 + Z

1/2
2

(z2/2)√
2m+ 1

)}
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C. Entanglement and the Minimal Group Representation for the Coset States

In this case, for the circle coset coherent states, the unique and fundamental projection

due to the underlying metaplectic structure is given by the same analytical functions ω ≡ σ,

and (z1, z
′
1) ≡ (z2, z

′
2), being the respective wave function :〈

Ψ(+) (ω)Ψ(−) (ω)
∣∣ |Φ⟩ =

1

2
Z

1/4
1 Z

′ 3/4
1

∑
n,m=1,2 ...

(z∗1/2)
2n√

(2n) !

(z′ ∗1 /2)2m+1√
(2m+ 1) !

+ (40)

+
1

2
Z

′ 1/4
1 Z

3/4
1 eiρ

∑
n,m=1,2 ...

(z′ ∗1 /2)2n√
2n !

(z∗1/2)
2m+1√

(2m+ 1) !

And the corresponding square norm Entanglement Probability is:∥∥〈Ψ(+) (ω)Ψ(−) (ω)
∣∣ |Φ⟩∥∥2 = (41)

Z
′ 3/2
1 Z

1/2
1 cosh

(
|z1|2 /4

)
sinh

(
|z′2|

2
/4
)
+ Z ′ 1/2

1 Z
3/2
1 cosh

(
|z′1|

2
/4
)

sinh
(
|z1|2 /4

)
+

+ Z ′
1 Z1

[
e−iρ cosh (z∗1z

′
1/4) sinh (z′∗1 z1/4) + eiρ cosh (z1z

′∗
1 /4) sinh (z′1z

∗
1/4)

]
We can notice that the above expression contains trigonometric factors because:

z∗1 z
′
1 = |ω|2 e−i∆ ei (α−α′∗), z∗

′

1 z1 = |ω|2 ei∆ e−i(α−α′∗)

Therefore, e.g. cosh (z∗1z
′
1/4) = cosh

(
|ω|2 e−i∆ei(α−α′∗)/4

)
, it could be expanded if one specif-

ically knows the exponent (α− α′∗).

As in the previous cases, we can see now the particular projections for the wave functions

and the corresponding norm square probabilities:

D. Entanglement Probabilities

- Entanglement Probability P++ of the Even (++) sectors:∥∥〈Ψ(+) (ω)Ψ(+) (σ)
∣∣ |Φ⟩∥∥2 = (Z1 Z2)

1/2 /4 (42)[(
Z ′

1

Z1

)1/2

cosh
(
|z′1|

2
/4
)
cosh

(
|z2|2 /4

)
+

(
Z ′

2

Z2

)1/2

cosh
(
|z1|2 /4

)
cosh

(
|z′2|

2
/4
)]

+

+

(
Z ′

1 Z
′
2

Z1 Z2

)1/4 [
e−iρ cosh (z∗1z

′
1/4) cosh (z

′∗
2 z2/4) + eiρ cosh (z1z

′∗
1 /4) cosh (z

′
2z

∗
2/4 )

]
(43)
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- Entanglement Probability P+− of the Even-Odd (+-) sectors:

∥∥〈Ψ(+) (ω)Ψ(−) (σ)
∣∣ |Φ⟩∥∥2 = (Z1/2

1 Z
3/2
2 /4

)
{[(

Z ′
1

Z1

)1/2

cosh
(
|z′1|

2
/4
)
sinh

(
|z2|2 /4

)
+

(
Z ′

2

Z2

)3/2

cosh
(
|z1|2 /4

)
sinh

(
|z′2|

2
/4
)]

+

+

(
Z ′

1

Z1

)1/4(
Z ′

2

Z2

)3/4 [
e−iρ cosh (z∗1z

′
1/4) sinh (z

′∗
2 z2/4) + eiρ cosh (z1z

′∗
1 /4) sinh (z

′
2z

∗
2/4)

]}

- Entanglement Probability P−− of the Even-Even (–) sectors:

∥∥〈Ψ(−) (ω)Ψ(−) (σ)
∣∣ |Φ⟩∥∥2 = (Z1 Z

3/2
2 /4

)
(44){[(

Z ′
1

Z1

)3/2

sinh
(
|z′1|

2
/4
)
sinh

(
|z2|2 /4

)
+

(
Z ′

2

Z2

)3/2

sinh
(
|z1|2 /4

)
sinh

(
|z′2|

2
/4
)]

+ (45)

+

(
Z ′

1 Z
′
2

Z1 Z2

)3/4 [
e−iρ sinh (z∗1z

′
1/4) sinh (z

′∗
2 z2/4) + eiρ sinh (z1z

′∗
1 /4) sinh (z

′
2z

∗
2/4)

]}
(46)

Here we can see that being (σ, ω) and (φ, φ′) involved in only one single variable z:

(z1, z2, z
′
1, z

′
2), the classicalization is more evident and the limits can be computed as in the

previous cases. Recall that Z : (Z1, Z2, Z
′
1, Z

′
2) just relates to |z|2 Eq.(39): Zi = (1 − |zi|2)

for each i = (1, 2).

V. COMPARISONS OF ENTANGLEMENTS: SCHRODINGER CAT STATES

AND MP(2) STATES

States: Let us first recall the correspondence between the Schrodinger cat states and

the basic (+) and (-) Mp(2) states, namely |1/4⟩ and |3/4⟩ :

Heisenberg −Weyl Metaplectic Mp(2)

|α+⟩ −→ |1/4⟩ Even

|α−⟩ −→ |3/4⟩ Odd

(47)

where explicitly the standard cat Schrodinger states are
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|α±⟩ =
1√

2 ± 2 e−2|α|2
[ | α ⟩ ± |−α ⟩ ]

which simply describe standard coherent states (e.g., Heisenberg-Weyl), α being the typical

complex displacement parameter. From the density matrix point of view, the Mp(2) states

are favored with respect to the cat states because of the principle of minimum representation:

The even and odd Mp(2) states are irreducible representations while the even and

odd cat states are not. In the case of the standard cat states, the density matrices for

the even and odd sectors are:

ρ±α =
1

2 ( 1 ± e −2 | α | 2 )
[ |α ⟩ ⟨α | + | −α ⟩ ⟨−α | ± ( | −α ⟩ ⟨α | + |α ⟩ ⟨−α | ) ]

(48)

while in the fundamental case of the minimal group representation Mp(2), we have a

diagonal representation clearly differentiated into the corresponding even and odd subspaces:

ρMp(2) =

 | 1/4 ⟩ ⟨ 1/4 | → even states

| 3/4 ⟩ ⟨ 3/4 | → odd states
(49)

The minimal group representation does also manifest in the fact that for the cat states ρ±α

have a tail while such tail does not appear in the fundamental expressions of ρMp(2) for both

Mp (2) even and odd sectors. The minimal Mp(2) representation is diagonal : classical

and quantum descriptions are both represented, and describe both continuum and

discrete sectors. (And this is particularly relevant in describing the fundamental quantum

substrate of space time as we showed in our recent work Refs [11], [10], [7]. Moreover, the

basicMp(2) even and odd states |1/4⟩ , |3/4⟩ do not require any extrinsic generation process

as the cat states, and can do form a generalized state of the type:∣∣ΨMp(2)

〉
gen

=
1√

|A|2 ± |B |2
[ A | 1/4 ⟩ ± B | 3/4 ⟩ ]

(similar to the standard Schrodinger cat state |α±⟩), and giving in this case the following

density matrix:

ρMp(2)gen =
1

|A|2 ± |B|2
[
|A|2 |1/4⟩ ⟨1/4| + |B|2 |3/4⟩ ⟨3/4| ± (B∗A |3/4⟩ ⟨1/4|+ A∗B |1/4⟩ ⟨3/4|)

]
(50)
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with coefficients A and B which can be fully computed depending on the problem considered.

Entanglements: With respect to the entanglement states in Ref [7], Schrodinger cat

states are

|α+⟩ = e−
1
2
|α|2

∞∑
n=0

α2n√
(2n)!

|2n⟩

|α−⟩ = e−
1
2
|α|2

∞∑
n=0

α2n+1√
(2n+ 1)!

|2n+ 1⟩

where the standard displacement operators D (α) and D (−α) have been combined operating

on the fiducial of the harmonic oscillator, namely |0⟩, to sweep out even and odd n-states.

The cat representation is not irreducible, as is the case of the Mp(n) basic states,

which do span out irreducible minimal subspaces.

The wave functions (projections) of the Schrodinger cat states on the London states are:

⟨φ| |α+⟩ =
e−

1
2
|α̃|2

2π

∞∑
n=0

α̃2n√
(2n)!

⟨φ| |α−⟩ =
e−

1
2
|α̃|2

2π

∞∑
n=0

α̃2n+1√
(2n+ 1)!

where α̃ = α eiφ. Therefore, the total or complete projected cat state on the circle is given

by:

⟨φ| |α+⟩ + ⟨φ| |α−⟩ =
e−

1
2
|α|2

2π

∞∑
n=0

α̃n

√
n!

(51)

which is just the projected London state φ with the Heisenberg-Weyl standard coherent

state |α ⟩ and the complex parameter α. This contrasts with the case of projecting

the Mp(2) states where the complete projected state on the circle is given by:

⟨ φ | | Ψ(ω) ⟩ =

(
1− |z|2

)1/4
√
2π

∑
n=0,1,2..

(z/2)2n√
(2n) !

[
1 +

(
1− |z|2

)1/2 (z/2)√
2n+ 1

]
(52)

where we see the weight function
(
1− |z|2

)1/4
indicating the geometry of the minimum

irreducible subspace (in the even (+) treated here) and 0 ≤ |z| < 1 (the unitary disc). Recall

too that the cat even and odd n representations are not irreducible.
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• In Figure 4 we show the Entanglement Probability P cat
+− for the circle (London) states

φ projected via the Schrodinger cat states for the orthogonal states φ = φ′ + π/2 :

∆ → π/2. In Figure 5 we reproduce the Entanglement Probability P+− for these

circle (London) states φ but projected via the Mp(2) states: Irreducible sectors of the

minimal Hilbert space yielding Classicalization. By comparing both cases we can

see the geometrical difference between the Entanglement probabilities: P cat
+− projecting

with the Schrodinger cat states versus P+− projecting with the basic Mp(2) states.

• Cat Antipodal Entanglements: Figure 4 shows P cat
+− (left side) and the Antipo-

dal Entanglement P cat
A+− of the circle London states for ∆ → π/2, ie orthogonal states

φ = φ′ + π/2. The variables α and β in the Figure are in the range 0 ≤ |α| , |β| < 2

to appreciate the shape of the Entanglement probability.

• Mp(2) Antipodal Entanglements: P+− (left side) and the Antipodal Entan-

glement PA+− of the circle London orthogonal states ∆ → π/2 are shown in Figure

4. The variables ω and σ of the analytic functions in the unitary disk (which square

norms are displayed in the Figure) being in the range : 0 ≤ |ω| , |σ| < 1.

VI. CONCLUDING REMARKS

In this paper we have computed and analyzed the Entanglement of quantum physics

within the new framework of our recent work Ref [6] on Classicalization. Thus, the results of

our paper here are twofold : Entanglement and Classicalization and the relationship

between them. In Section I we summarized the main results of the study performed here

and we do not summarize them here again. In this Section we just briefly highlight main

concluding remarks in a synthetic way. We consider various types of states on the circle :

London states, new coherent coset states and states with cylinder topology as eigenstates of

a lowering operator.

We highlight here the following conclusions of this paper:

(1) The Entanglement study performed here clearly supports the fact the metaplec-

tic group naturally classicalizes any quantum state as the realization of the Minimal Group
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FIG. 4: Schrodinger cat and circle Entanglement Probability of even and odd states:

P cat(+−) (left side) and the Antipodal one P cat
A (+−) (right side) of the circle entangled

orthogonal states φ = φ′ + π/2 : ∆ → π/2 projected onto the Schrodinger cat even and odd

states. The parameters α and β in the Figure represent the respective norms, being the range of

the parameters 0 ≤ |α| and |β| < 2 to appreciate the shape of the Entanglement Probability.

FIG. 5: Mp(2) and circle Entanglement Probability of even and odd states: P (+−)

(left side) and the Antipodal one PA(+−) (right side) of the circle orthogonal states φ =

φ′ + π/2, (∆ → π/2), projected on the basic Mp(2) states: Classicalization. The variables

ω and σ in the Figure representing the respective norms of the analytic functions in the unitary

disk, have the range 0 ≤ |ω| and |σ| < 1.
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Representation Principle: this is uniquely realized by the Metaplectic group with its asso-

ciated minimal Hilbert Space sectors, and the Entanglements of the different states show

too Minimal Entanglements, in particular zero when projecting on the Mp(2) states:

Classicalization).

(2) The result of the item (1) provides a precise conceptual and computational support

to the meaning of classicalization with respect to the condition of taking a limit for ℏ (or

any other control parameter) for the classical description which is more a formal limit rather

than a full conceptual description for classicalization.

(3) The projected Mp(2) Entanglement Probability is dependent on the angular

variables, and through the difference ∆ = (φ − φ′) in all cases treated here except for the

cylindrical coherent states. In the cylindrical topology case the entanglement becomes

independent of the angular variables (observable) in the limit of coincident states

(ω → σ), projected on a single subspace (even or odd) of the total Hilbert space. This

is a quantum memory loss manifestation in the Robertson sense, that is, there is no

decoherence in the sense of interaction with an environment.

(4) Entanglement Classicalization is stronger for the cylinder topology than for the

circle: Decay of the Entanglement Probability for large n (even and odd levels n = 1, 2, 3, ...)

is decreasing exponentially with (2n)2 and (2n + 1)2 in the cylinder, while it is decreasing

exponentially with (2n) and (2n+ 1) in the circle.

(5) Comparison of the Entanglements projected on the Mp(2) states and on other (not

Mp(2)) states clearly shows the differences between the two cases both for the Entan-

glement and Classicalization. Figures 4 and 5 exhibit the differences between the

Schrodinger cat projected Entanglement Probabilities and the Mp(2) Entanglement Proba-

bilities.

(6) Comparison of the Antipodal Entanglement (regulated by the phase control

parameter ρ = π) with the Non Antipodal (ρ = 0) one reveals interesting properties in all

cases studied here, for example (as in Figure 5) the low and Minimal Entanglement

occurring in the Mp(2) projected states, as another manifestation of Classicalization,

particularly in the Antipodal Entanglement.
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(7) Outlook and Implications: The results of this paper on theoretical and concep-

tual aspects of quantum theory and its classicalization can have impact and applications in

different branches of physics and other disciplines, classical and quantum information pro-

cessing, quantum computation and experimental research, the quantum-classical interaction

and interpretation measurements, the classical-quantum duality, the classical or quantum

optimization. For instance:

(i) By choosing a type of geometry- topology of the states, one can obtain stronger or

lower classicalization.

(ii) By using or avoiding coincident or orthogonal states, one can allows or avoid that

entanglement be decreasing, broken or vanishing.

(iii) By choosing Antipodal or Non Antipodal Entanglement (regulating the phase control

parameter ρ be equal to π or 0 respectively), Entanglement can be lower, minimal or not.

(iv) Combination of possibilities (i)-(ii)-(iii) could yield more effects.
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VIII. APPENDIX I : MP(2) PROJECTED ENTANGLEMENT PROBABILITIES

IN THE CIRCLE

Below we provide now the explicit expressions of the square norm Entanglement Proba-

bilities P and their limits ω → σ (analytic degeneracy) for the circle (London type) states.It

is convenient to introduce the following notation:

β =
|ω|2

4
cos∆, β̃ =

|ω|2

4
sin∆ (53)

γ =
|σ|2

4
cos∆, γ̃ =

|σ|2

4
sin∆ (54)
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(1) The Even-even sector Probability P++ is given by:

P++ ≡
∥∥〈Ψ(+) (ω)Ψ(+) (σ)

∣∣ |Φ⟩∥∥2 = 1

2

√(
1− |ω|2

) (
1− |σ|2

){
cosh β cosh β̃ +

+ cos ρ
[
cosh β cos β̃ cosh γ cos γ̃ + sinh β sin β̃ sinhσ sin σ̃

]
+

+ sin ρ
[
sinh β sin β̃ cosh γ cos γ̃ − sinh γ sin γ̃ cosh β cos β̃

]}
Limit ω → σ :

lim
ω→σ

P++ =
1

2

(
1− |ω|2

)
×{

cosh2

(
|ω|2

4

)
+ cos ρ

[
cosh2

(
|ω|2

4
cos∆

)
− sin2

(
|ω|2

4
sin∆

)]}

(2) Even-odd sector Probability P+− :

P+− ≡
∥∥〈Ψ(+) (ω)Ψ(−) (σ)

∣∣ |Φ⟩∥∥2 = 1

2

(
1− |ω|2

)1/2 (
1− |σ|2

)3/2{
cosh

(
|ω|2

4

)
sinh

(
|σ|2

4

)
+

+
[
cosh β cos β̃ sinh γ cos γ̃ + sinh β sin β̃ cosh γ sin γ̃

]
cos ρ +

+
[
cosh β cos β̃ cosh γ sin γ̃ − sinh β sin β̃ sinh γ cos γ̃

]
sin ρ

}

Limit ω → σ :

lim
ω → σ

P+− =
1

2

(
1− |ω|2

)2{
cosh

(
|ω|2

4

)
sinh

(
|ω|2

4

)
+

+cosh

(
|ω|2

4
cos∆

)
sinh

(
|ω|2

4
cos∆

)
cos ρ+ cos

(
|ω|2

4
sin∆

)
sin

(
|ω|2

4
sin∆

)
sin ρ

}

(3) Odd-odd sector Probability P−− :

P−− ≡
∥∥〈Ψ(−) (ω)Ψ(−) (σ)

∣∣ |Φ⟩∥∥2 = 1

2

[(
1− |ω|2

) (
1− |σ|2

)]3/2{
sinh

(
|ω|2

4

)
sinh

(
|σ|2

4

)
+

+
[
sinh β cos β̃ sinh γ cos γ̃ + cosh β sin β̃ cosh γ sin γ̃

]
cos ρ +

+
[
sinh β cos β̃ cosh γ sin γ̃ − cosh β sin β̃ sinh γ sin γ̃

]
sin ρ

}
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Limit ω → σ :

lim
ω → σ

P−− =
1

2

(
1− |ω|2

)3 ×{
sinh2

(
|ω|2

4

)
+

[
sinh2

(
|ω|2

4
cos∆

)
+ sin2

(
|ω|2

4
sin∆

)]
cos ρ

}

As we see here, for the entangled Mp(2)-projected London states, the limits ω → σ

(analytic degeneracy) are (φ, φ′) dependent through ∆ ≡ (φ− φ′) in all cases.
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