Fundamental properties of the dark and the luminous matter from Low Surface Brightness discs

Paolo Salucci

Universe Webinar | keV Warm Dark Matter in Agreement with Observations in Tribute to Héctor J. De Vega

What we can observe by means of telescopes is the light emitted by stars, dust and gas, but they are only the tip of an iceberg. Dark matter (DM) is a type of matter hypothesized to account for effects that appear to be the result of invisible mass.

The existence and properties of dark matter can be inferred from its gravitational effects on visible matter. Many OBSERVATIONS:

What is the NATURE of dark matter (DM)?

It must barely interact with ordinary baryonic matter and radiation, except through gravity

It remains unknown

DM particle CANDIDATES

WIMP (Weakly interacting massive particles) Relic DM particle from the early Universe

- DM abundance in the Universe

Interaction via the electroweak force

100 GeV mass range

with non-relativistic velocities since its decoupling time

Clump in small structures (galaxies) and aggregation to form larger structures (bottom-up theory)

Supersymmetric extensions of the standard model of particle physics predict a new particle with these properties

Cold Dark Matter (CDM)

Collisionless CDM \CDM N-body simulations

CUSPY profile $\rho_{NFW}(r) = \frac{\rho_s}{(r/r_s)(1+r/r_s)^2}$

WIMP particle has not yet been observed directly

LHC

Issues with the main DM scenario

N-body simulations Λ CDM

Success on large scale structure $\gtrsim 50 \, kpc$

missing satellite problem too big to fail problem

Core - cusp problem in any galaxy:

Different DM particle CANDIDATE

Warm dark matter particle (WDM) keV mass range

DM particles decouples from the cosmological plasma when it is still mildly relativistic. It overcomes the problem on small scales

WDM is fermionic a quantum pressure emerges

possibility of forming cored distribution WDM : 0.5 keV

CDM

Viel at al. 2016

CDM Proposed solution:

baryonic matter feedback from supernovae explosions, stellar winds, gas outflow

However:

- challenges in dwarf and large spirals
- challenges in fine-tuned process

in Low Surface Brightness galaxies?

DM distribution in galaxies

Ellipticals

- dominated by random motions
- kinematics is very uncertain
- -nuisance anisotropy parameter, which is font of degeneracy

Disc galaxies

- rotational supported systems
- rather simple kinematics

$$V_{tot}^{2}(r) = r \frac{d}{dr} \phi_{tot}(r) = V_{d}^{2}(r) + V_{HI}^{2}(r) + V_{bu}^{2}(r) + V_{h}^{2}(r)$$

Universal Rotation Curve (URC) stacked analysis

The velocity rotation curves $v_c(r)$ in km s⁻¹.

$$egin{aligned} &rac{\mathrm{d}^2 \mu}{\mathrm{d} \mathrm{r}^2} + rac{2}{r} \; rac{\mathrm{d} \mu}{\mathrm{d} \mathrm{r}} = \; - \; 4 \pi \, G \, m \,
ho(r) \ &= \; - \; rac{4 \; G \; m^2}{\pi \; \hbar^3} \int_0^\infty \mathrm{d} p \; p^2 \; f\left(rac{p^2}{2m} - \mu(r)
ight), \end{aligned}$$

Mon Not R Astron Soc, Volume 442, Issue 3, 11 August 2014, Pages 2717–2727, https://doi.org/10.1093/mnras/stu972 DeVega et al.

DM distribution in disc galaxies

circular velocity rotation curves (RC)

Corbelli and Salucci, 2000

$$V_{tot}^{2}(r) = r \frac{d}{dr} \phi_{tot}(r) = V_{d}^{2}(r) + V_{HI}^{2}(r) + V_{bu}^{2}(r) + V_{h}^{2}(r)$$

rotating disc systems which emit an amount of light per area smaller than normal spirals (4-10 times fainter)

 $\mu_{0,B} \gtrsim 23 \, mag \, arcsec^{-2}$ $\mu_{0,R} \gtrsim 21 \, mag \, arcsec^{-2}$

diffuse, low-density exponential stellar discs

 $\Sigma_* \simeq 12.3 \, M_\odot/pc^2$

Cohen et al., 2018

full population of galaxies, ranging from small ($10^7 M_{\odot}$) to very large (more than $10^{10} M_{\odot}$) stellar disc mass M_d

Pahwa and Saha, 2018

Values of M_{HI}/L_B in LSBs range from $\simeq 0.1$ to $\simeq 10$

Typical LSBs gaseous disc $M_{HI} \simeq M_d$

Characteristic low density

 $\Sigma_{HI} \simeq 5 M_{\odot} p c^{-2}$

likely prevents an efficient star formation

 $\mathrm{SFR} \lesssim 0.1 \, M_{\odot} y r^{-1}$ $\Sigma_{SFR} \lesssim 10^{-3} M_{\odot} y r^{-1} k p c^{-2}$

very low content in metal and dust

stellar population appears to be uniformly distributed in the stellar disc

generally isolated systems, located on the edges of large-scale structure

LSBs are not the faded remnants of HSBs that have ceased star formation, LSBs are likely slowly evolving galaxies

URC method applied to the LSB galaxies

72 Low Surface Brightness galaxies (Di Paolo, Salucci, Erkurt (2019)) 1601 circular velocity measurements

URC method applied to the LSB galaxies

LSBs rotation curves Show a universal trend

Persic, Salucci, Stel, 2007

Rotation curves BINNING

Mass Modeling 5 coadded RCs

Mass Modeling 5 coadded RCs

NOTE: –radial dependence of f_b

-different $f_b(r)$ in galaxies of different size

-different $f_b(r)$ in galaxies of different morphology

Scaling laws for LSBs

Similar to the HSB spirals scaling laws

Scaling laws for LSBs

Universal Rotation Curve

 $V^2(r/R_{opt}) = V_d^2(r/R_{opt}) + V_{DM}^2(r/R_{opt}) \longrightarrow$ function of V_{opt}

Di Paolo et al. 2019 (a)

Scaling laws for LSBs

COMPACTNESS (C): discrepancy between the measured R_{opt} and the expected value \bar{R}_{opt}

Di Paolo et al. 2019 (a)

 $V_{urc}(r, R_D, V_{opt}, C)^2 = V_d(r, R_D(V_{opt}, C), M_D(V_{opt}, C))^2 + V_h(r, r_0(V_{opt}, C), Q_0(V_{opt}, C))^2$

Universal Rotation Curve

 $\Delta V/V \simeq 8\%$

Di Paolo et al. 2019 (a)

Constant density central regions in all LSBs

– R_d vs r_0

Relation & Co. Portal btween Dark and Luminous matter in the ΛCDM scenario + baryonic feedback :

- challenge in dwarf and large spirals
- challenge in fine-tuning parameters
- Challenge at higher levels in LSB galaxies

Specific power spectrum of dark matter AND DM pressure

plus some direct interaction between dark matter (DM) and luminous matter (LM). Requirements possible for keV WDM

Start from halos made by collisionless particle inconsistent with present data

Conclusion

- The LM-DM interaction might be a necessary key to understand the DM phenomenon: WDM passes The test
- to reproduce the observed core in the galactic DM halo
- the empirical relationships between the galactic properties

vei. Din	${\langle ho_0 angle}{10^{-3} M_\odot / pc^3}$	$\langle n_c \rangle$ kpc	(M_D) $10^8 M_{\odot}$	$\langle M_{vir} angle \ 10^{11}M_{\odot}$	$\alpha(n_{opt})$	V_i^2
1	3.7 ± 1.4	10.7 ± 4.3	8.8 ± 1.8	1.0 ± 0.4	0.37	$\alpha =$
2	5.1 ± 1.1	12.8 ± 3.0	38 ± 3	2.4 ± 0.9	0.49	
3	3.7 ± 0.5	17.1 ± 1.9	130 ± 5	4.0 ± 1.3	0.52	
4	$1.7^{+3.2}_{-1.1}$	$29.7^{+84.1}_{-22.0}$	421 ± 40	8.4 ± 3.5	0.76	
5	$0.8^{+1.1}_{-0.4}$	$99.1^{+750.5}_{-87.5}$	1730 ± 117	112 ± 55	0.82	

 $= \frac{\langle V_D^2(R_{opt}) \rangle}{\langle V_{tot}^2(R_{opt}) \rangle}$ \downarrow baryonic
fraction

DENORMALIZATION

takes into account that all the double normalised RCs are similar to their co-added double normalised RC in each single velocity bin

good approximation :

the relations obtained for the co-added RCs are assumed to be true also for the single galaxies

 R_{c}

 M_d

 $R_c/R_d^{1.42} = const.$ one relation in all velocity bins

 $\frac{M_d}{V_{opt}^2 R_{opt}} = const.$ one different value in each velocity bin

$$\begin{split} M_{DM}(R_{opt}) &= G^{-1}(1-\alpha)V_{opt}^2R_{opt}\\ \alpha &= \frac{V_d^2(R_{opt})}{V^2(R_{opt})} \; = \; \text{baryonic fraction at optical radius,}\\ &\text{one different value in each velocity bin}\\ M_{DM}(r) &= 2\pi\rho_0 R_c^3 [ln(1+r/R_c) - tg^{-1}(r/R_c) + 0.5ln(1+(r/R_c)^2)] \end{split}$$

for a DM cored Burkert profile

Compactness

Similar to the dwarf discs relation

Strong correlation between the stellar and the DM compactness

Di Paolo et al. 2019 (a)

e lower bound on the mass of a fermionic DM candidate front known small Dwarf Spheroidal galaxies

ADVANTAGES:

model independent —

does not require any assumption on initial distribution or evolution of DM particles

- relaxed the relation $R_h = R_{\frac{1}{2}}$

$$\begin{array}{l} \mbox{THOMAS-FERMI MODEL} \\ \mbox{galactic halo made of a fermionic self-gravitating} \\ \mbox{gas} \\ \mbox{at a finite temperature} \\ \mbox{T}_0 \\ \mbox{: mean field gravitational potential, with spherical} \\ \mbox{symmetry} \\ \mbox{Poisson} \\ \mbox{equation} \\ \mbox{equation} \\ \mbox{d} \frac{d\phi(r)}{dr} = G \frac{M(r)}{r^2} \\ \mbox{d} \frac{dM(r)}{dr} = 4\pi r^2 \rho(r) \\ \mbox{} \rho(r) = mn(r) = \frac{gm}{2\pi^2\hbar^3} \int_0^\infty p^2 dp f \left[\frac{p^2}{2m} - \mu(r) \right] \\ \mbox{gas} \\ \m$$

$$f(E) = \frac{p^2}{(2m)} - \mu(r) \qquad \mu(r) = \tilde{\mu}_0 - m\Phi(r)$$
$$f_{FD}(E) = \frac{1}{1 + exp(E/T_0)}$$

Fraction of baryonic matter in LSBs versus their mass in stars

Not so stringent

but very robust result because:

- generic fermionic DM particle
- model independent ______present phase-space density of DM particles in galaxies
- relaxed the relation $R_h = R_{\frac{1}{2}}$