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to Héctor J. De Vega

November 10, 2021

https://arxiv.org/abs/2104.01334


The Standard Model (SM) and its needed extensions

The SM is very successful but, certainly, it has to be extended:
e.g. it does not include gravity and does not (completely) account for

I Dark Matter (DM)

I Neutrino Oscillations.
(Obvious candidates to solve this problem are right-handed neutrinos Ni)

I Baryon Asymmetry of the Universe (BAU)



Other SM problems

(besides DM, neutrino oscillations and BAU)



Electroweak vacuum metastability

In order to ensure the absolute stability of the electroweak (EW) vacuum one needs

Mt < (171.09± 0.15th ± 0.25α3 ± 0.12Mh ) GeV = (171.09± 0.31) GeV
[Salvio (2017)], [Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia (2013)]

Since Mt = 172.4± 0.7GeV [Zyla et al (Particle Data Group) (2020)]

the stability bound is violated at the ∼2σ level

Phase diagram of the SM:
[Buttazzo, Degrassi, Giardino, Giudice, Sala, Salvio, Strumia (2013)]
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The metastability is a SM problem during inflation

During inflation the energy were so high that transitions to the true minimum
were possible → interesting upper bounds on the Hubble rate during inflation
[Joti, Katsis, Loupas, Salvio, Strumia, Tetradis, Urbano (2017)]

The condition to have SM Higgs inflation is very similar to the stability bound

Mt < (171.43± 0.12th ± 0.28α3 ± 0.12Mh ) GeV = (171.43± 0.32) GeV

then we need new physics to account for inflation

https://arxiv.org/abs/1706.00792


Upper bounds on the Hubble rate during inflation

The model:

L = LEH + LSM + ξH |H|2R

The results:
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The strong CP problem

One can add a P and CP violating term to the QCD Lagrangian:

−
θ

32π2
GaµνG̃

a
µν ,

where

Gaµν ≡ gluon field strength, G̃aµν ≡
1

2
εµναβG

a
αβ

The θ term has a physical effect only in the presence of quark masses ...

example: dneutron ∼ |θ|e
m2
π

m3
QCD

∼ 10−16|θ|e×cm

[Baluni (1978); Crewther, Di Vecchia, Veneziano, Witten (1979)]

This suppression is not enough: experimentally dneutron . 10−26e×cm

→ |θ| . 10−10
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Peccei-Quinn symmetry

Idea by Peccei and Quinn (1977): promote θ to a dynamical variable such that changes
in θ are equivalent to redefinitions of the various fields and so have no physical effect.

This is implement through a global chiral U(1) (the Peccei-Quinn symmetry, U(1)PQ):
some colored fermions are charged under U(1)PQ

=⇒ because of chiral anomaly a field redefinition leads to

θ → θ + ∆θ

Field redefinitions cannot affect physics so any value of θ is equivalent to

θ = 0

(the P and CP conserving value)



Peccei-Quinn symmetry and axions

In the presence of fermion masses

→ the condensing field, which gives mass to fermions, is charged under U(1)PQ

Since any colored fermion is (or seems to be) massive
→ U(1)PQ is spontaneously broken

This leads to a pseudo Goldstone boson called the axion
[Weinberg (1978); Wilczek (1978)]
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A simple solutions for the problems above:
add axions, right-handed (sterile) neutrinos

The aνMSM [Salvio (2015, 2018)]

L = LSM + LN + Laxion + gravity part

Right-handed neutrino sector:

LN = iN i∂/Ni +

(
1

2
NiMijNj + YijLiHNj + h.c.

)
Axion sector (KSVZ):

Laxion = i
2∑
j=1

qjD/ qj + |∂µA|2 − (y q2Aq1 + h.c.)

−λA(|A|2 − f2
a/2)2 − λHA(|H|2 − v2)(|A|2 − f2

a/2)

↙
λHA allows to stabilize the EW vacuum

In some region of the parameter space the model accounts for

I Neutrino oscillations (through right-handed neutrinos which symmetrize the SM
field content)

I DM (through the axion and the lightest sterile neutrino)

I Baryogenesis (through leptogenesis triggered by the right-handed neutrinos)

http://arxiv.org/abs/1501.03781
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The aνMSM and absolute stability
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In the plot we set

I the SM and low-energy neutrino parameters around the central values

I the lightest neutrino mass m1 = 0, M2 = 1014GeV

I fa = 1011GeV and λA(MA) = 0.05



The aνMSM and inflation

[Salvio (2015, 2018)]

L = LSM + LN + Laxion + gravity part

This model was further studied by several scientists, e.g.
[Ballesteros, Redondo, Ringwald, Tamarit (2016)]
who proposed a variant where the Majorana masses Mi are generated by 〈A〉

Inflation can be triggered by the Higgs and/or by |A|
[Salvio (2015, 2018)], [Ballesteros, Redondo, Ringwald, Tamarit (2016)]

By sitting at the frontier between stability and metastability (criticality) one can avoid
further new physics or strong coupling at subplanckian energies in the case of Higgs
inflation [Salvio (2017, 2018)]

http://arxiv.org/abs/1501.03781
https://arxiv.org/abs/1608.05414
http://arxiv.org/abs/1501.03781
https://arxiv.org/abs/1608.05414
https://arxiv.org/abs/1712.04477


The aνMSM and inflation

[Salvio (2015, 2018)]

L = LSM + LN + Laxion + gravity part

This model was further studied by several scientists, e.g.
[Ballesteros, Redondo, Ringwald, Tamarit (2016)]
who proposed a variant where the Majorana masses Mi are generated by 〈A〉

Inflation can be triggered by the Higgs and/or by |A|
[Salvio (2015, 2018)], [Ballesteros, Redondo, Ringwald, Tamarit (2016)]

By sitting at the frontier between stability and metastability (criticality) one can avoid
further new physics or strong coupling at subplanckian energies in the case of Higgs
inflation [Salvio (2017, 2018)]

http://arxiv.org/abs/1501.03781
https://arxiv.org/abs/1608.05414
http://arxiv.org/abs/1501.03781
https://arxiv.org/abs/1608.05414
https://arxiv.org/abs/1712.04477


The aνMSM and criticality
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Figure: Representative RG evolution of the relevant SM parameters close to criticality (λH is
nearly zero at the Planck scale).



The aνMSM and inflation: results
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Figure: RG-improved potential and its log-approximation close to criticality.

Inflationary observables: ns ≈ 0.96, r ∼ 0.01, As ≈ 2.1× 10−9 in agreement with the
most recent Planck results (2018)



The aνMSM and inflation: results
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Figure: The cutoff of the theory obtained by reading the coefficients of the dimension-n operators
δh′n (for n > 4 and varying n) is compared to the inflationary scale.



The aνMSM and dark matter (DM)

Work with Simone Scollo

There are three possible sources of DM in the aνMSM

I axion

I lightest sterile neutrino

I Primordial black holes?



Axion dark matter
The axion is a good dark matter candidate

Axions are produced non-thermally through

Misalignement mechanism: [Preskill, Wise, Wilczek (1983); Abbott, Sikivie (1983);
Dine, Fischler (1983); Turner (1986)]
A recent calculation gives [Ballesteros, Redondo, Ringwald, Tamarit (2016)]

Ωah
2 = (0.12± 0.02)

(
fa

1.92× 1011GeV

)1.165

If Ωa = ΩDM this fixes fa

Higgs inflation features a high reheating temperature, TRH & 1013 GeV, thanks to the
sizable couplings between the Higgs and other SM particles [Bezrukov, Gorbunov,
Shaposhnikov (2008)], [Bellido, Figueroa, Rubio (2009)].
Thus the PQ phase transition occurs after inflation in this case

String decay:[Davis (1986); Harari, Sikivie (1987); Davis,
Shellard (1989); Battye, Shellard (1997); etc]
It was estimated in the KSVZ model by [Ballesteros,
Redondo, Ringwald, Tamarit (2016)]
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https://arxiv.org/abs/1610.01639
https://arxiv.org/pdf/0812.3622.pdf
https://arxiv.org/pdf/0812.3622.pdf
https://arxiv.org/abs/0812.4624
https://arxiv.org/pdf/1610.01639.pdf
https://arxiv.org/pdf/1610.01639.pdf


Sterile-neutrino DM

The lightest sterile neutrino N1 with mass ms can contribute a fraction Ωs of ΩDM

It can be produced through a mixing θ with the active neutrinos. θ can receive a
contribution from the mixing θα1 of N1 with the active neutrino of any flavour
α ∈ {e, µ, τ}:

θ2 =
∑

α=e,µ,τ

|θα1|2

I Non resonantly [Dodelson, Widrow (1994)]

For a standard quark-hadron crossover transition, TQCD ≈ 170 MeV, one obtains
[Abazajian (2005)]

ms ≈ 3.4 keV

(
sin2(2θ)

10−8

)−0.615( Ωs

0.26

)0.5

I Resonantly [Shi, Fuller (1998)]: similar to the Dodelson-Widrow mechanism but
there is a resonant enhancement due to a primordial lepton asymmetry

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.72.17
https://arxiv.org/pdf/astro-ph/0511630.pdf
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.82.2832


Sterile-neutrino DM
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Figure:
The black line is the non-resonant sterile-neutrino production.
The region between the black and orange line is the resonant sterile-neutrino production.
The upper constraints are given by X-rays searches and the bound in dashed black is a phase-space
bound related to Pauli’s exclusion principle

The allowed regions have ms ∼ keV and a very small θ



Axion-sterile-neutrino DM
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If you include some estimate (subject however to large uncertainties) of structure formation bounds

one finds a small region of parameter space allowed for resonantly produced sterile neutrino DM.



Axion-sterile-neutrino DM
Adding the structure formation bounds in the non-resonant case
(green dot-dashed lines) [Palazzo, Cumberbatch, Slosar, Silk (2007)]
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An allowed region appears only for Xs . 0.3

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.82.2832


Primordial black holes?

I Primordial black holes may be generated if the curvature power spectrum has a
peak of order ∼ 10−2[Hertzberg, Yamada (2017)].

I This is about 7 orders of magnitude larger than at ∼ 60 e-folds before the end of
inflation (the As ∼ 10−9 measured by Planck).
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Summary

It was proposed a model (aνMSM) that combine the idea of axions and right-handed
neutrinos and accounts for all the observational evidence for new physics as well as
inflation and solve the strong-CP problem as well as the metastability issue of the SM.
In particular we have discussed:

1. Critical Higgs inflation can be implemented in a viable way, but primordial black
holes cannot contribute to DM

2. Multicomponet axion-sterile-neutrino DM (work with Simone Scollo)

This can be achieved accounting for neutrino oscillation, baryogenesis, absolute
stability and inflation at the same time



Thank you very much for your attention!



Extra slides



The consistency seems ok (up to the Planck mass MPl)

Some couplings diverge as a function of the energy µ (Landau poles), but above MPl

102 104 106 108 1010 1012 1014 1016 1018 1020

0.0

0.2

0.4

0.6

0.8

1.0

RGE scale Μ in GeV

S
M

co
u
p
li

n
g
s

g1

g2

g3yt

Λ
yb

m in TeV

Solutions of the renormalization group equations (RGEs) of the most relevant SM parameters

back to main slides



Qualitative origin of the stability bound

Veff = V + V1 + V2 + ...

V (h) =
λ

4

(
h2 − v2

)2
, V1(h) =

1

(4π)2

∑
i

cimi(h)4

(
ln
mi(h)2

µ2
+ di

)
, ...

where h2 ≡ 2|H|2 and ci and di are ∼ 1 constants

By substituting bare parameters → renormalized ones

=⇒
∂Veff

∂µ
= 0 and one is free to choose µ to improve perturbation theory

Since at large fields, h� v, we have mi(h)2 ∝ h2, we choose µ2 = h2, then

Veff(h) =
λ(h)

4

(
h2 − v(h)2

)2
+ ... = −

m(h)2

2
h2 +

λ(h)

4
h4 + ...

So for h� v

Veff(h) ≈
λ(h)

4
h4

I Mh contributes positively to λ → lower bound on Mh

I yt contributes negatively to the running of λ → upper bound on Mt
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Procedure to extract the stability bound

Steps of the procedure

Veff , including relevant parameters

RGEs of the relevant couplings

Values of the relevant parameters (also called threshold corrections or matching
conditions) at the EW scale (e.g. at Mt) ...

Finally impose that Veff at the EW vacuum is the absolute minimum!

State-of-the-art loop calculation

I Two loop Veff including the leading couplings = {λ, yt, g3, g2, g1}

I Three loop RGEs for {λ, yt, g3, g2, g1} and one loop RGE for {yb, yτ} ...

I Two loop values of {λ, yt, g3, g2, g1} at Mt ...

Previous calculations
[Cabibbo, Maiani, Parisi, Petronzio (1979); Casas, Espinosa, Quiros (1994, 1996);
Bezrukov, Kalmykov, Kniehl, Shaposhnikov (2012); Degrassi, Di Vita, Elias-Miró,
Espinosa, Giudice, Isidori, Strumia (2012)]

http://www.sciencedirect.com/science/article/pii/0550321379901676
http://arxiv.org/abs/hep-ph/9409458v1
http://arxiv.org/abs/hep-ph/9603227v1
http://arxiv.org/abs/1205.2893
http://arxiv.org/abs/1205.6497
http://arxiv.org/abs/1205.6497
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Input values of the SM observables
(used to fix relevant parameters: λ, yt, g1, g2)

Mh = (125.09± 0.21stat. ± 0.11syst.) GeV.

[ATLAS and CMS Collaborations (2015)]

MW = 80.384± 0.014 GeV Mass of the W boson [1 ]
MZ = 91.1876± 0.0021 GeV Mass of the Z boson [2 ]
Mh = 125.15± 0.24 GeV (source quoted above)
Mt = 173.34± 0.76± 0.3 GeV Mass of the top quark [3 ]

V ≡ (
√

2Gµ)−1/2 = 246.21971± 0.00006 GeV Fermi constant [4 ]
α3(MZ) = 0.1184± 0.0007 SU(3)c coupling (5 flavors) [5 ]

[1] TeVatron average: FERMILAB-TM-2532-E. LEP average: CERN-PH-EP/2006-042

[2] 2012 Particle Data Group average, pdg.lbl.gov

[3] ATLAS, CDF, CMS, D0 Collaborations, arXiv:1403.4427. Plus an uncertainty O(ΛQCD)
because of non-perturbative effects [Alekhin, Djouadi, Moch (2013)]

[4] MuLan Collaboration, arXiv:1211.0960

[5] S. Bethke, arXiv:1210.0325
back to main slides
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Step 1: effective potential

RG-improved tree level potential (V )
Classical potential with couplings replaced by the running ones

One loop (V1)
Veff depends mainly on the top, W, Z, h and Goldstone squared masses in the classical
background h: in the Landau gauge ... they are

t ≡
y2
t h

2

2
, w ≡

g2
2h

2

4
, z ≡

(g2
2 + 3g2

1/5)h2

4
, m2

h ≡ 3λh2 −m2, g ≡ λh2 −m2

→ (4π)2V1 is (in a suitable renormalization scheme, called MS)

3w2

2

(
ln

w

µ2
−

5

6

)
+

3z2

4

(
ln

z

µ2
−

5

6

)
−3t2

(
ln

t

µ2
−

3

2

)
+
m4
h

4

(
ln
m2
h

µ2
−

3

2

)
+

3g2

4

(
ln

g

µ2
−

3

2

)

In order to keep the logarithms in the effective potential small we choose

µ = h

Indeed, t, w, z,m2
h and g are ∝ h2 for h� m

Two loop (V2)
It is very complicated, but always depend on t, w, z,m2

h, g plus gi

back to main slides



Step 2: running couplings

For a generic parameter p we write the RGE as

dp

d lnµ2
=

β
(1)
p

(4π)2
+

β
(2)
p

(4π)4
+ ...

They were computed before in the literature up to three loops

(very long and not very illuminating expressions at three loops)

One loop RGEs for λ, y2
t , g

2
i and m2

β
(1)
λ = λ

(
12λ+ 6y2

t −
9g2

2

2
−

9g2
1

10

)
−3y4

t +
9g4

2

16
+

27g4
1

400
+

9g2
2g

2
1

40
,

β
(1)

y2t
= y2

t

(
9y2
t

2
− 8g2

3 −
9g2

2

4
−

17g2
1

20

)
,

β
(1)

g2
1

=
41

10
g4
1 , β

(1)

g2
2

= −
19

6
g4
2 , β

(1)

g2
3

= −7g4
3 ,

β
(1)

m2 = m2

(
6λ+ 3y2

t −
9g2

2

4
−

9g2
1

20

)
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Step 3: threshold corrections

λ(Mt) = 0.12604 + 0.00206

(
Mh

GeV
− 125.15

)
− 0.00004

(
Mt

GeV
− 173.34

)
± 0.00030th

m(Mt)

GeV
= 131.55 + 0.94

(
Mh

GeV
− 125.15

)
+ 0.17

(
Mt

GeV
− 173.34

)
± 0.15th

yt(Mt) = 0.93690 + 0.00556

(
Mt

GeV
− 173.34

)
− 0.00042

α3(MZ)− 0.1184

0.0007
± 0.00050th

g2(Mt) = 0.64779 + 0.00004

(
Mt

GeV
− 173.34

)
+ 0.00011

MW − 80.384 GeV

0.014 GeV

gY (Mt) = 0.35830 + 0.00011

(
Mt

GeV
− 173.34

)
− 0.00020

MW − 80.384 GeV

0.014 GeV

g3(Mt) = 1.1666 + 0.00314
α3(MZ)− 0.1184

0.0007
− 0.00046

(
Mt

GeV
− 173.34

)

The theoretical uncertainties on these quantities are much lower than those used in
previous determinations of the stability bound

back to main slides



The SM phase diagram in terms of Planck scale couplings

yt(MPl) versus λ(MPl)
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“Planck-scale dominated” corresponds to ΛI > 1018 GeV

“No EW vacuum” corresponds to a situation in which λ is negative at the EW scale



The SM phase diagram in terms of Planck scale couplings

Gauge coupling g2 at MPl versus λ(MPl)
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The SM phase diagram in terms of potential parameters

Anthropic band
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Phase diagram of the SM potential

If λ(MPl) < 0 there is an upper bound on m requiring 〈h〉 6= 0 at the EW scale.

This bound is, however, much weaker than the anthropic bound of
[Agrawal, Barr, Donoghue, Seckel (1997); Schellekens (2014)]
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Tunneling probability

The probability of creating a bubble of the absolute minimum in dV dt was found
by [Kobzarev, Okun, Voloshin (1975); Coleman (1977); Callan, Coleman (1977)]

d℘ = dt dV Λ4
B e
−S(ΛB)

S(ΛB) ≡ the action of the bounce of size R = Λ−1
B , given by S(ΛB) =

8π2

3|λ(ΛB)|

back to main slides
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Upper bounds on the Hubble rate during inflation

The model:

L = LEH + LSM + ξH |H|2R

The results:
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h inflation: definition

In the h inflation model the role of the inflaton is played by h

The model: [Bezrukov, Shaposhnikov (2008)]

L = LEH + LSM + ξ|H|2R

http://arxiv.org/abs/arXiv:0710.3755


h inflation: classical analysis

The part of S that depends

on gµν and H only → SgH =

∫
d4x
√
−g
[(

M2
P

2
+ ξ|H|2

)
R+ |DµH|2 − V (H)

]

The non-minimal coupling can be eliminated through a conformal transformation ...

gµν → ĝµν ≡ Ω2gµν , Ω2 = 1 +
2ξ|H|2

M2
P

In the unitary gauge, where the only scalar field is the radial mode φ ≡
√

2|H|2

SgH =

∫
d4x
√
−ĝ
[
M2
P

2
R̂+K

(∂φ)2

2
−

V

Ω4

]
where K ≡ (Ω2 + 6ξ2φ2/M2

P )/Ω4 and we set the gauge fields to zero.

The φ kinetic term can be made canonical through φ = φ(χ) defined by

dχ

dφ
=

√
Ω2 + 6ξ2φ2/M2

P

Ω4

This is what we want in order to have slow-roll ...

↗

Thus, χ feels a potential U ≡
V

Ω4
=

λ(φ(χ)2 − v2)2

4(1 + ξφ(χ)2/M2
P )2

φ > MP /
√
ξ

'
λ

4ξ2
M4
P
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h inflation: classical analysis

All parameters can be fixed through experiments and observations ...

ξ can be fixed requiring the WMAP normalization [WMAP Collaboration (2013)]

U(φ = φWMAP )

ε(φ = φWMAP )
' (0.02746MP )4

φWMAP is fixed by requiring N =

∫ φWMAP

φend

U

M2
P

(
dU

dφ

)−1 (dχ
dφ

)2

dφ ' 59

[Bezrukov, Gorbunov, Shaposhnikov (2009); Garcia-Bellido, Figueroa, Rubio (2009)]

and φend is the field value at the end of inflation: ε(φend) ' 1

This leads to ξ ' 4.7× 104
√
λ and indicates that xi has to be large ...

http://arxiv.org/abs/1212.5226
http://arxiv.org/abs/arXiv:0812.3622
http://arxiv.org/abs/arXiv:0812.4624
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h inflation: quantum analysis

Two regimes [Bezrukov, Shaposhnikov, (2009)]:

I small fields: φ�MP /ξ (the SM is recovered)

I large fields: φ�MP /ξ (chiral EW action with VEV set to φ/Ω 'MP /
√
ξ) →

decoupling of φ in the inflationary regime

State-of-the-art calculation of the bound on Mh to have inflation:

I Two loop effective potential Ueff in the inflationary regime
including the effect of ξ and the leading SM couplings = {λ, yt, g3, g2, g1}

I Three loop SM RGE from the EW scale up to MP /ξ for {λ, yt, g3, g2, g1} ...

I Two loop RGE for the same SM couplings
and one loop RGE for ξ in the chiral EW theory

I Two loop threshold corrections at the top mass, for these SM couplings

Previous calculations: [Bezrukov, Magnin, Shaposhnikov (2009); Bezrukov,
Shaposhnikov (2009); Allison (2013)]

http://arxiv.org/abs/arXiv:0904.1537
http://arxiv.org/abs/arXiv:0812.4950
http://arxiv.org/abs/arXiv:0904.1537
http://arxiv.org/abs/arXiv:0904.1537
http://arxiv.org/abs/arXiv:1306.6931
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Bound on Mh to have h inflation

Derivation

1. We fix ξ as in the classical case, but with U replaced by Ueff .
... this already gives ξinf ≡ ξ(MP /

√
ξt), where conventionally ξt = ξ(Mt)

2. If Mh is too small (or Mt is too large) we go from the blue behavior to the red
one! When the slope is negative the Higgs cannot roll towards the EW vacuum

0 2 4 6 8

Χ

MP
0

2.´10-11

4.´10-11

6.´10-11

8.´10-11

1.´10-10

Ueff

MP
4

We set the th. errors to zero and the input
parameters to the central values, except Mt:

I Solid line: Mt = 171.43GeV
(ξ fixed as described above)

I Dashed line: Mt = 171.437GeV
(ξt = 300)

Result (bound to have h inflation):

Mh > 129.4 GeV + 2.0(Mt − 173.34 GeV)− 0.5 GeV
α3(MZ)− 0.1184

0.0007
± 0.3th GeV

back to main slides
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We set the th. errors to zero and the input
parameters to the central values, except Mt:

I Solid line: Mt = 171.43GeV
(ξ fixed as described above)

I Dashed line: Mt = 171.437GeV
(ξt = 300)

Result (bound to have h inflation):

Mh > 129.4 GeV + 2.0(Mt − 173.34 GeV)− 0.5 GeV
α3(MZ)− 0.1184

0.0007
± 0.3th GeV

back to main slides



More details on right-handed neutrinos

Y =
U∗νD

√
m RD√M
v

where

D√m ≡ diag(
√
m1,
√
m2,
√
m3),

D√M ≡ diag(
√
M1,

√
M2,

√
M3)

and Uν is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix:
it can be decomposed as Uν = VνP12, where (sij ≡ sin(θij), cij ≡ cos(θij))

Vν =

 c12c13 s12c13 s13e−iδ

−s12c23 − c12s13s23eiδ c12c23 − s12s13s23eiδ c13s23

s12s23 − c12s13c23eiδ −c12s23 − s12s13c23eiδ c13c23


P12 =

 eiβ1 0 0
0 eiβ2 0
0 0 1


R is a generic complex orthogonal matrix. One can show that the simpler and realistic
case of two right-handed neutrinos below MPl can be recovered by setting m1 = 0 and

R =

 0 0 1
cos z − sin z 0
ξ sin z ξ cos z 0


where z is a complex parameter and ξ = ±1.

(In the plot ξ is irrelevant and we set z = 0) back to main slides
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